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h i g h l i g h t s

� An electrochemical model for a composite LMO-NMC half cell is outlined.
� An extended Kalman filter is used to estimate each composite active material.
� Estimates are validated with half cells, aged under constant current cycling.
� Active material estimates correctly predict the observed capacity fade.
� A differential capacity analysis confirms that active materials are lost at a similar rate.
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a b s t r a c t

Electrochemical models of lithium-ion batteries have been increasingly considered for online state of
health estimation. These models can more accurately predict cell performance than traditional circuit
models and can better relate physical degradation mechanisms to changes in model parameters. How-
ever, examples of state of health estimation algorithms that are validated with experimental data are
scarce in the literature, particularly for cells with a composite electrode. The individual electrode active
materials in a composite electrode may degrade at different rates and according to different physical
mechanisms, and online estimation of this degradation facilitates more robust knowledge of how battery
performance changes over its life. In this paper we use a reduced-order electrochemical model for a
composite LiMn2O4-LiNi1/3Mn1/3 Co1/3O2 (LMO-NMC) electrode cell for online estimation of active ma-
terial loss. Experimental data collected from composite electrode half cells that were aged under con-
stant current cycling are used in an extended Kalman filter to estimate model parameters associated with
loss of each active material. The capacity loss predicted by the online estimates agrees well with the
measured capacity loss. Additionally, a differential capacity analysis demonstrates that active materials
lose capacity at a similar rate, the same conclusion obtained from the online estimation algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hybrid and electric vehicles using Lithium-ion (Li-ion) battery
packs are gaining popularity among consumers, as performance
and cost continue to improve. State of health (SOH) is one impor-
tant metric that must be estimated by the vehicle's battery man-
agement system (BMS), typically defined by the degradation of
capacity and available power over the life of the battery. Accurate
knowledge of SOH not only gives the driver an accurate miles-to-
empty metric, but it also helps maintain an accurate battery

model within the BMS by accounting for changes in model pa-
rameters throughout the battery's life. An accurate battery model is
critical for estimating cell state of charge (SOC) and available power,
in order to keep the battery pack operating safely and efficiently [1].

Increased attention has been given to electrochemical-based
models for SOC and SOH estimation over traditional circuit
models, due to their ability to capture the internal physics of the
battery and incorporate model parameters that are directly asso-
ciated with degradation mechanisms [1e3]. However the govern-
ing equations of electrochemical models are complex and rely on
partial differential equations (PDEs) that describe the spatial vari-
ation of Li concentration and potential throughout the cell [1,4],
making them more difficult to use in traditional state estimation
algorithms. Therefore, approximations and model-order reduction
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techniques can be used to reduce the set of PDEs to ordinary dif-
ferential equations (ODEs) more suitable for online estimation and
control. One such approximation is known as the single particle
model (SPM), which approximates the three-dimensional electrode
as a single, spherical particle, with an averaged current density
applied at the particle surface [5e7]. In the SPM, diffusion of Li
throughout the spherical particle is still governed by a PDE, and
although it is possible to design a SOC/SOH observer using a model
with PDEs [8e10], these methods require significant computational
effort and may not be practical in an onboard BMS. Therefore,
model-order reduction methods that eliminate the reliance on
PDEs are an important step towards designing practical electro-
chemical model-based state estimators. Various model-order
reduction techniques have been applied for SOC estimation,
including discretization of the PDE [11], a polynomial approxima-
tion [8,12,13], eigenvalue selection [2], and the Pade approximation
[14].

Electrochemical-based models can be used for SOH estimation
by estimating the model parameters that change as the battery
ages. In many common battery chemistries, the dominant aging
mechanisms include loss of cyclable Li and internal resistance
growth due to a side reaction at the solideelectrolyte interface (SEI)
[15,16] and loss of active material either through dissolution in the
electrolyte [15,16] or through electrical isolation induced by
cracking of the electrode conductive matrix [16,17]. There have
been several investigations into using electrochemical-based
models for online SOH estimation, using various methods. An un-
scented Kalman filter was used to estimate the active material
fractions of each electrode [13], though the results were not vali-
dated experimentally. Least squares techniques were used to esti-
mate model parameters associated with aging [10,12,18,19];
however the computational effort required by these approaches
may limit their applicability to onboard estimation. In general,
electrochemical model-based SOH estimation algorithms that are
validated with experimental aging data are scarce in the literature,
particularly for cells with composite electrodes. Composite elec-
trodes complicate the problem due to differences in the utilization
and dominant agingmechanisms between each compositematerial
[20,21]. Previous work attempted to estimate capacity loss in a
composite LiMn2O4-LiNi1/3Mn1/3 Co1/3O2 (LMO-NMC) cell, where
loss of cyclable Li was the dominant aging mechanism [22]; how-
ever this work did not consider loss of active material as an addi-
tional mechanism that could be accelerated at later stages of life or
at high temperatures [23,24].

In this paper, a reduced-order electrochemical model for a
composite LMO-NMC cell is used in an extended Kalman filter to

estimate loss of active material. The estimation is validated exper-
imentally using data from composite electrode half cells that were
aged over the course of 20 constant current cycles. The estimation
results are then analyzed using differential capacity curves in order
to distinguish between a process affecting only one active material,
or simultaneous degradation of both active materials.

2. Model development

The model used in this paper has been described in previous
work [14,22,20], and is based on the traditional single particle
model, with some modifications to accommodate the composite
electrode. The PDE governing Li concentration in the electrode
particles is ill-suited for traditional control and estimation; instead,
the relationship between Li concentration and current input is
approximated by a low order ODE using the Pade approximation
[7,25]. Since the kinetic and concentration overpotentials of a cell
under load are dependent on the Li concentration at the electrode/
electrolyte interface, the Pade approximation is performed at the
particle surface. The result is a linear transfer function that relates
the Li surface concentration to the current input. As is typical of
model-order reduction methods, a tradeoff can be made between
the order of the approximated linear transfer function and accuracy
of the approximation. In this work, a 3rd order approximation was
used for the solid diffusion PDE, since it has been shown to have
good agreement in the frequency range that is typical for auto-
motive drive cycles [7]. The resulting state dynamics, voltage
output equation, and state definitions are shown in equations
(1)e(3).

In the context of the SPM, estimating loss of active material
translates to estimating themodel parameters εLMO and εNMC, which
represent the total active material volume fractions of each mate-
rial. These two parameters are treated as additional states in the
model. Therefore, the complete state vector consists of 3 states that
combine to give the surface and bulk concentration of the LMO
particle (cs,LMO and cLMO), 3 states that combine to give the surface
and bulk concentration of the NMC particle (cs,NMC and cNMC), and 2
states representing the active material volume fractions of LMO and
NMC (εLMO and εNMC). The parameters ai and bi are a result of the
Pade approximation, and are functions of the particle radius and
diffusion coefficient [7,25]. There are no state dynamics assumed
for the two volume fraction states, since they change slowly over
time. The input, u, is current and the output potential for the LMO
or NMC particle, Fi, is a nonlinear function of the open circuit
voltage (OCV) evaluated at the surface concentration, Ui, the kinetic
overpotential, hi, and an ohmic loss.
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