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a b s t r a c t

A significant increase in strength and performance of reinforced concrete, timber and metal beams may
be achieved by adhesively bonding a fibre reinforced polymer composite, or metallic such as steel plate
to the tension face of a beam. One of the major failure modes in these plated beams is the debonding of
the plate from the original beam in a brittle manner. This is commonly attributed to the interfacial
stresses between the adherends whose quantification has led to the development of many analytical
solutions over the last two decades. The adherends are subjected to axial, bending and shear deforma-
tions. However, most analytical solutions have neglected the effect of shear deformation in adherends.
Few solutions consider this effect approximately but are limited to one or two specific loading conditions.
This paper presents a more rigorous solution for interfacial stresses in plated beams under an arbitrary
loading with the shear deformation of the adherends duly considered in closed form using Timoshenko's
beam theory. The solution is general to linear elastic analysis of prismatic beams of arbitrary cross section
under arbitrary loading with a plate of any thickness bonded either symmetrically or asymmetrically
with respect to the span of the beam.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforced concrete (RC), metal or timber beams may be
strengthened by adhesively bonding a fibre reinforced polymer (FRP)
composite, steel or other metal plate to the soffit of the beam (Fig. 1).
Such a strengthened beam is commonly termed a plated beam. This
strengthening technique has become widely accepted in structural
engineering for retrofitting and strengthening of existing structures,
with FRP plating in particular being extensively employed. Under
external loading, forces are transferred between beam and plate,
generating interfacial shear and normal stresses in the adhesive layer
between the adherends. Their concentration is highest at the plate
ends due to the presence of a geometric discontinuity and their
combination is believed to be responsible for the brittle debonding
mode of failure commonly observed in tests which occurs well before
the full flexural strength of the plated beam is reached.

Consequently, the interfacial stresses between the plate and the
original beam have attracted a great interest in the last two decades
and many analytical solutions [1–21] have been developed to quantify
them. Among them, Smith and Teng [8] is simple, accurate and the

most popular. All except Narayanamurthy et al. [20] and Zhang and
Teng [21] are applicable only to one or a few specific loading condi-
tions. Both are applicable to any loading arrangement and are simpler
than and retain the accuracy of Smith and Teng [8]. All these but
[7,9,13,14] are considered to be ‘classical’ solutions as they assume
invariant stresses through the thickness of the adhesive layer and
hence violate the free surface condition at the ends of the adhesive
layer. However, as this affects the solution only within a few milli-
metres from the plate ends [2], classical solutions still offer useful
insights of the behaviour of plated beams.

Higher order solutions [7,9,13,14] consider varying stresses
through the thickness of the adhesive layer and satisfy the stress-free
condition at the plate ends. However, they are complex to develop and
difficult to adopt in practice because of stress singularity at the bi-
material (adhesive and substrate) interface at the plate ends. This
paper derives a closed-form solution similar to the classical solutions
but which includes shear deformations in the adherends. A higher
order solution is beyond the scope of this paper.

The adherends in a plated beam are generally subjected to axial,
bending and shear deformations under external loading. However,
most theoretical solutions neglect the effect of shear deformation of
the adherends. Liu and Zhu [4] considered the effect of shear defor-
mation of the beam only in their general solution of interfacial shear
stress but provided an incomplete solution, omitting expressions for
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the constants of integration. Smith and Teng [8] considered the shear
deformation of the adherends within the governing differential
equations but neglected it when deriving the general solutions to
avoid complexities in obtaining general solutions from the two
strongly coupled governing equations. Abdelouahed [17,22] (applic-
able to UDL and single point loads) and Yang and Wu [18] (applicable
to UDL only) adopted the solution of Smith and Teng [8] and included
the shear deformation effect only approximately in the solution of
interfacial shear stress. Their solutions suggest that the effect of shear
deformation predominates on interfacial shear stress but is negligible
for interfacial normal stress, although the present solution and finite
element (FE) predictions will demonstrate that this is not necessarily
correct. Narayanamurthy et al. [23] (applicable to all loading
arrangements) include an approximation to the effect of shear
deformation on the interfacial shear stress and used Timoshenko's
beam theory to derive interfacial normal stress. This is the first closed-
form solution that included the effects of adherend's shear deforma-
tion on both interfacial shear and normal stresses in plated beams.
Although the formulation for interfacial normal stress is accurate, its
accuracy is compromised by the approximation involved in interfacial
shear stress. These four solutions have adopted different

approximations to overcome mathematical difficulties in arriving at
their general solutions. Recently Edalati and Irani [24] provided a
solution applicable only to a UDL by considering all three deforma-
tions in adherends in closed-form but it predicted a reduction in
interfacial normal stress when compared with that of Smith and Teng
[8], the opposite trend to that predicted by FE analyses as well as by
the solution presented here. The actual effect of adherends' shear
deformation is not yet clearly understood.

The effect of shear deformations has been investigated in adhe-
sively bonded single and double lap joints subjected to axial loading.
Delale et al. [25] modelled the stresses in single lap joints made of
orthotropic adherends which were assumed to be very thin compared
to the lateral dimensions and used Reissner's plate theory in a plane
strain state. Tsai et al. [26] considered the shear deformation in double
lap joints under tension by assuming a linear shear stress variation
through the thickness of the adherends and treated the adherends as
two thin beams, instead of thin plates as in Delale et al. [25]. Many
other important interfacial stress solutions for double lap joints under
axial loading are reviewed in detail by Chalkley and Rose [27]. These
solutions highlight that the accuracy of the predicted interfacial
stresses can be improved by considering the shear deformations of the
adherends, but they clearly cannot be directly applied to the present
problem because of the differences in both structural form and
loading conditions.

Further, the shear deformation effect in multilayered composites
and sandwich plates loaded by transverse pressure with various in-
plane distributions has been studied by Carerra and Ciuffreda [28]
using a unified formulation. They compared about 40 theories based
on equivalent single layer models and layer-wise models within the
framework of principle of virtual displacement and Reissner's mixed
variational theorem and presented a closed form solution for ortho-
tropic plates by expanding the applied pressure loading in Fourier

Notation

A cross sectional area of the adhesive or adherends
b width of the adhesive or adherends
E modulus of elasticity of the adhesive or adherends
G shear modulus of the adhesive
I second moment of area of the adhesive or adherends

about their centroidal axis
I1c, Iac, I2csecond moment of area of beam, adhesive and plate

section about the centroidal axis of the composite
beam section respectively

Ie second moment of area of the equivalent composite
beam section about its centroidal axis

L length of the adhesive or adherends
Lp length of the plate
M bending moment in the adherends
M(0), M(Lp) bending moment in plated beam at x¼0 and x¼Lp

under original loading ignoring the effects of plate end
loading (Case-2)

M1(0), M1(Lp) bending moment in beam at x¼0 and x¼Lp in
Case-3 loading

MT(x) total applied bending moment at any section of the
plated beam

N axial force in the adherends
N(x) resultant axial force resisted by any section of the

adherends
Qe(x,y) first moment of area of equivalent adhesive or plate

section about the centroidal axis of the composite
beam section

t thickness of the adhesive or adherends
u longitudinal displacement of the adherends

v vertical displacement of the adherends
V(x) shear force at any section of adherends
VTc(x) total applied shear force at any section of the com-

posite beam
VT total shear force at any section of the plated beam in

Case-3 loading
yc vertical distance from top of the beam to the centroid

of the composite beam section
y1, y2 vertical distance from bottom of the beam and top of

the plate to their respective centroids respectively
pl, pr subscripts referring respectively to the left and right

end of the plate
1, a, 2 subscripts referring respectively to the beam, adhesive

and plate
κi Timoshenko's shear coefficient
s(x) interfacial normal stress at any section of the plated

beam
τ(x) interfacial shear stress at any section of the plated

beam
γxy engineering shear strain at the adhesive layer
ε1(x), ε2(x) longitudinal strain at bottom layer of beam and at

top layer of plate respectively
ψ1–ψ6 roots for the governing differential equation of τ(x) in

Case-3 loading
η1–η5 roots for the governing differential equation of s(x) in

Case-3 loading
B1–B12 constants of integration in general solution of τ(x) in

Case-3 loading and
C1–C6 constants of integration in general solution of s(x) in

Case-3 loading

Fig. 1. Plated beam.

V. Narayanamurthy et al. / International Journal of Adhesion & Adhesives 64 (2016) 33–4734



Download English Version:

https://daneshyari.com/en/article/773324

Download Persian Version:

https://daneshyari.com/article/773324

Daneshyari.com

https://daneshyari.com/en/article/773324
https://daneshyari.com/article/773324
https://daneshyari.com

