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Common inconsistencies in modeling gas transport in porous
electrodes: The dusty-gas model and the Fick law
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h i g h l i g h t s

� Common inconsistencies in modeling gas transport in SOFC electrodes are discussed.
� Assuming uniform pressure in dusty-gas model is inconsistent with stoichiometry.
� Use of Bosanquet formula in Fick model does not allow diffusive fluxes to sum up to 0.
� Dusty-gas model must be used without isobaric assumption for multi-component mixtures.
� Fick model can be used for binary mixtures considering ordinary diffusion only.
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a b s t r a c t

The paper shows as two assumptions typically made in modeling gas transport in solid oxide fuel cell
electrodes, i.e., a) uniform pressure in the dusty-gas model, and b) validity of the Bosanquet formula in
the Fick model, may lead to serious inconsistencies (such as molar fractions that do not sum up to one or
fluxes that do not obey reaction stoichiometry), thus nullifying the efforts of the mechanistic modeling of
transport phenomena. The nature of the inconsistent use of the models is explained with clear examples,
then the correct implementation of the gas transport models is discussed. The study aims to promote a
coherent physically-based modeling of gas transport phenomena in porous electrodes in order to assist
their rational design.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the current trends in solid oxide fuel cell (SOFC) research
is the development of more efficient and stable electrodes and cells.
In electrode-supported designs, a significant contribution to
voltage losses may arise from gas transport resistances through
porous electrodes [1]. The correct modeling of gas transport phe-
nomena is important to predict the partial pressure profiles within
a porous electrode, which allow us to evaluate local reaction rates
[2], the occurrence of detrimental redox conditions [3], concen-
tration overpotentials and limiting current densities [4] or to infer
unknown parameters [5].

Modeling gas transport in SOFC electrodes requires the

description of viscous multi-component gas mixtures moving
within a porousmedium in transition regime (i.e., Knudsen number
between 0.01 and 10). Therefore, a gas transport model must
encompass, at least, transport mechanisms such as ordinary
diffusion, Knudsen diffusion and viscous flow. Typically, thermal
and surface diffusion are neglected. Several gas transport models
have been adopted in SOFC modeling: Fick model (FM) [6], Max-
welleStefan model (MSM) [7,8], dusty-gas model (DGM) [7,9], bi-
nary friction model (BFM) [10,11], cylindrical pore interpolation
model (CPIM) [12,13]. By far, FM and DGM are the most frequently
used.

However, unfortunately a large number of good modeling
studies are partly flawed by incompatible assumptions or incorrect
applications of these models, which lead to serious inconsistencies
such as molar fractions that do not sum up to 1 or fluxes that do not
obey reaction stoichiometry. In such a case, the gas transport model
fails to predict partial pressure profiles, thus potentially affecting
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not only concentration losses, but also activation and ohmic losses
because transport and reaction phenomena are intrinsically
coupled [14].

The aim of this paper is to summarize the typical inconsistencies
found in the literature in the application of DGM and FM, which are
the assumption of uniform pressure and the use of the Bosanquet
formula, respectively. Proofs of the inconsistencies are shown and
the correct implementation of the models is remarked in order to
avoid an incorrect use. The paper is thus concerned with the formal
consistency of the model implementation: the inherent soundness
of the gas transport models, their mutual comparison and the
quantification of how their incorrect use may affect the prediction
of partial pressure profiles are out of the scope of the paper, for
which the reader is referred to specific studies [1,7,10e13,15].

2. Mathematical background on gas transport modeling in
SOFC electrodes

The core of a continuum electrode-level or cell-level model
consists in a set of mass balance equations within the porous
electrodes. For simplicity, let us consider a 1D geometry, although
the discussion can be easily extended to 2D and 3D. Let us also
assume isothermal conditions, ideal gas behavior and homoge-
neous electrode microstructure, because most of the gas transport
models are valid under these assumptions.

The molar balance (i.e., continuity equation) for a generic gas
species i is as follows:

f

RT
v Pyið Þ
vt

þ vNi

vx
¼ si (1a)

Ni ¼ yi
P
RT

vþ Ndiff
i (1b)

where f is the porosity, R the gas constant, T the temperature, P the
total pressure, yi the molar fraction, x the coordinate (x ¼ 0:
electrode-gas chamber/channel interface, x ¼ L: electrode-
electrolyte interface), Ni and Ndiff

i the total and diffusive molar
fluxes, v the molar average velocity and si is the source term, which
is due to the sum of chemical and electrochemical reactions
involving the species i. Typically, a Dirichlet boundary condition is
set on one side (e.g., at x¼ 0, P¼ Pch and yi ¼ ychi are specified) and a
Neumann boundary condition is set on the other side (e.g., if the
electrochemical reaction is assumed to occur at the electrode-
electrolyte interface only, Ni ¼ �ni·J

S/F is set at x ¼ L, where ni is
the stoichiometric coefficient and JS the current density per unit
surface).

For n gas species, the problem is solved once evaluated the
dependent variables, which are the velocity and n independent
state variables (for example, given the algebraic constraintPn

i¼1yi ¼ 1, n independent state variables are P and yi for i ¼ 1, …,
ne1). In general, the complete description of the system requires:
a) n molar balances as Eq. (1a), b) the momentum balance (i.e.,
equation of motion), c) the equation of state (e.g., the ideal gas law,
as assumed in this study), and d) constitutive equations (i.e., gas
transport models, as those mentioned in Section 1) to link the
fluxes Ni to the state variables and the velocity field [16]. Note that
some gas transport models as DGM, BFM and CPIM already
comprise the momentum balance, thus the momentum balance
must not be explicitly included in the set of equations.

If a flawed gas transport model is used, an inconsistency is created.
The inconsistency can be

Pn
i¼1yis1 or one of the fluxes may not

obey the corresponding molar balance (some examples are given in
Sections 3.2 and 4.2).

3. The dusty-gas model (DGM)

3.1. DGM equations

The dusty-gas model is an implicit expression among fluxes,
pressure and molar fractions as follows [9]:
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DB;eff
ij and DK;eff

i are the effective binary and Knudsen diffusiv-
ities, corrected by porosity f and tortuosity factor t as

DB;eff
ij ¼ f=ð tÞ$DB

ij and DK;eff
i ¼ f=ð tÞ$DK

i [17]. Binary diffusivities

DB
ij ¼ DB

ji can be evaluated with kinetic-theory-based methods (e.g.,

Chapman-Enskog [18]) or correlations (e.g., Fuller et al. [19]) while
the Knudsen diffusivity is equal to:

DK
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8RT
pMi
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where dp is the mean pore size and Mi the molecular weight of
species i. In Eq. (2), m represents the dynamic gas viscosity and B the
electrode permeability, typically calculated as B¼ (f/t)$dp2/32.

A large number of experimental studies have satisfactorily
validated the DGM in porous media with and without reaction
[8,20]. The superiority of the DGM has been proven in SOFC ap-
plications too [7,10,12], althoughwemust agreewith Bhattacharyya
and Rengaswamy [21] that the same set of experimental data [22]
has been considered in all these studies. For the sake of
completeness, it must bementioned that some criticisms have been
raised about the formal derivation of the DGM [11,13,23]. On the
other hand, comparisons with much sounder models like BFM and
CPIM performed by Wang et al. [12] and Vural et al. [10] show that
there is no significant difference among these models.

By summing up Eq. (2) for all the n species we obtain
[8,10,12,15]:
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which shows that in the DGM the pressure gradient is related to
Knudsen diffusion and viscous flow.

3.2. Assumptions inconsistent with the DGM

Once specified the gas transport model as in Eq. (2), the math-
ematical problem is determined since it consists of n molar bal-
ances as Eq. (1a) in n state variables (remember that the DGM
already includes the momentum balance, thus the molar average
velocity is implicitly calculated). Any additional relationship among
P, yi and Ni makes the problem overdetermined, thus leading to an
inconsistency in its solution.

The typical inconsistent assumption made in the DGM appli-
cation is the assumption of uniform pressure [6,24e35], which is an
additional constraint on the state variable P. In such a case, by
considering the definition of DK

i in Eq. (3), Eq. (4) becomes [8,15]:

Xn
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p
¼ 0 (5)

Eq. (5) is the Graham's law of effusion, which correctly describes
the diffusion behavior in a confined system in the absence of
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