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h i g h l i g h t s

� A battery model was built for the estimation of the battery State of Charge (SOC).
� Test data of battery was used to obtain accurate parameters for the battery model.
� A improve Sigma Point Kalman Filtering (SPKF) algorithm was used to estimate the SOC.
� Strong Tracking Factor was used to enhance the accuracy of the SPKF algorithm.
� Adequate experimental and simulated data based on the improve SPKF were discussed.
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a b s t r a c t

The State of Charge (SOC) estimation is important since it has a crucial role in the operation of Electrical
Vehicle (EV) power battery. This paper built an Equivalent Circuit Model (ECM) of the LiMn2O4 power
battery, and vast characteristics experiments were undertaken to make the model identification and thus
the battery SOC estimation was realized. The SOC estimation was based on the Strong Tracking Sigma
Point Kalman Filter (STSPKF) algorithm. The comparison of experimental and simulated results indicates
that the STSPKF algorithm performs well in estimating the battery SOC, which has the advantages of
tracking the variables in real-time and adjusting the error covariance by taking the Strong Tracking Factor
(STF) into account. The results also show that the STSPKF algorithm estimated the SOC more accurately
than the Extended Kalman Filter (EKF) algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As concerns for global warming and depletion of natural re-
sources continue to grow, the Electric Vehicles (EVs) are estab-
lishing as the most promising solution to the increasing problems
associated with the transportation. The internal combustion en-
gines based automobile industry is gradually transitioning to EVs
[1] and Hybrid Electric Vehicles (HEVs). These EVs taking advantage
of the renewable sources of electricity have been widely accepted
as important transitional technologies for sustainable trans-
portation [2].

The power battery is an important component of EVs and HEVs

and plays a crucial role in their successful application. Among the
various types of power batteries, the Lithium-ion battery possesses
the higher energy to weight ratio and long operating life, which is
recognized as the most promising for EV applications. However,
due to its unique characteristics, the Lithium-ion power battery
must be used with the support of Battery Management System
(BMS) to ensure safe and reliable operations. The BMS should
prevent over-discharging or over-charging under all operating
conditions, extend the lifetime and protect the battery from per-
manent damage thereby facilitating its safe and efficient dis-
charging and charging [3]. The functions of BMS include the battery
parameter measurement, State of Charge (SOC) estimation, safety
management, battery pack equilibrium, thermal management, etc.
The SOC is defined as the ratio of capacity at a given time to the
nominal capacity of the battery [4]. The estimation of SOC is one of
the most important functions of BMS.
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Generally, the SOC estimation methods can be divided into two
categories. The first category is based on the directmeasurement, in
which the SOC is estimated by a simple relationship between the
measurements and the SOC. In our view, the following methods
belong to this category. 1) The discharge test is the most reliable
method under the laboratory conditions. However, it is too time-
consuming and hard to use in practice. 2) The open-circuit
voltage is a promising method in applications with relatively long
rest periods. Since the rest periods will occur only occasionally, it is
used in combinationwith other techniques for ensuring continuous
indication of the SOC [5]. 3) The ampere hour counting (current
integration) method has been widely used, which has reasonable
accuracy and is cost effective when a sufficiently accurate current
sensor is adopted. This method was reported to have several
drawbacks [6e8]. It fails to estimate coulombic efficiency accu-
rately, determine the initial SOC, or indicate the variations in initial
SOC resulting from self-discharge and other factors. In addition, the
error becomes large when the battery operates at high and low
temperature or when the current sharply fluctuates. Also, it is an
open loop SOC estimator that will accumulate the error [9].

The second category combines the battery model, measurement
data and control algorithm. As a whole, there are the following four
types of battery models to describe the functioning and operation
of the battery:

1) The electrochemical model, which describes the internal re-
actions of the battery by adopting a certain mathematical
equation. Reinhardt Klein et al. presented a full macro-
homogeneous 1-D model of a Li-ion battery as well as its
reduction, suitable for the purpose of estimation and control
[10]. MengGuo et al. designed a multi-geometry and physical
model for Li-ion battery module [11], which predicts 3-D pro-
files of the electrical potential and temperature in the battery.
However, the electrochemical model is too complicated for most
practical applications.

2) The specific factor model is designed for describing a specific
factor (e.g., temperature model, and cycle life model) of the
battery. Quanshi Chen et al. proposed the temperature model
which could describe the decrease in battery capacity with
decreasing temperature without the knowledge of best working
temperature [12]. The authors also gave a relationship between
the cycle life and the depth of discharge. However, one specific
factor model can only describe one aspect of the battery.

3) The Electrochemical Impedance Spectroscopy (EIS) model is on
the basis of an experimental method that characterizes elec-
trochemical systems of the battery. The amplitude and phase of
electrochemical impedance are measured when a small AC
current flows through the battery. The EIS also can be obtained
by repeating this procedure for a certain range of frequencies
[13]. It is a unique technique for the analysis of the very slow
dynamics of the batteries [14]. In Refs. [14e19] the authors used
several methods to build the EIS models, and based on them
estimated the SOC of the battery.

4) The Equivalent Circuit Model (ECM) is an external characteristic
model that can be used to predict battery behavior [20]. The
ECM’s mathematical expression as transfer functions could be
introduced to describe only the behavior of the input and output
variables of the battery, such as current and voltage [21]. The
ECM generally includes an nth-order RC network to simulate the
battery behavior, and offers best compromise between the time
for computations, parameterization effort, and precision of the
simulation [22]. A first-order RC network was used to simulate
the battery [23e25], which saved the computational time but
lacked accuracy. LowWen Yao et al. compared the first-, second-
, and third-order RC networks, reducing the complexity of

battery modeling and multi-cell analysis [26]. Their studies also
show that notablemodeling error existed in the relaxation effect
modeling when first-order RC network is applied, and that the
accuracy improved when second- or third-order RC network is
used. The prediction of battery behavior using nth-order RC
networkwas also discussed in Refs. [27e29]. It can be concluded
that increasing the RC networks, subjected to nth-order not
exceeding 5th improves the precision of dynamic voltage esti-
mation. At higher values of nth, a large error will arise from the
linear discrete method. In addition, the excessive computational
costs caused by the complex structure of the model make this
method unsuitable for nonlinear parameters' identification [28].

Currently, several combinations of battery models and adaptive
control algorithms are used in battery characteristics research, such
as the SOC estimation and state of health evaluation. Several control
algorithms, such as the Artificial Neural Network (ANN), fuzzy logic,
Support Vector Machine (SVM), and system filtering theory, have
been used to estimate the SOC. The ANNwas first used for depicting
the available capacity, estimating the SOC, and describing the non-
linear relationships in a lead-acid battery [30e34]. Since the degree
of battery degradation was used as one of the input signals, this
model showed accurate results for batteries of different sizes and
degradation states [34]. Another control algorithm is fuzzy logic. It
was applied for estimating the battery SOC [35e37] based on the
training datasets obtained from impedance spectroscopy, coulomb
counting techniques, and voltage recovery measurements. Finally,
the SVM was also used successfully to estimate the battery SOC
[38e42]. While the SVM model gives good accuracies, its disad-
vantages are the offline establishment and heavy computational
training processes.

Compared to the above methods, the system filtering theory has
the advantages of being closed-loop and real-time, which has
attracted the wide attention recently. The widely used system
filtering theory is Kalman Filter (KF). However, as KF are linear in
filtering process, several modifications have been proposed for
their applications to non-linear battery system. Saeed Sepasi et al.
established the Extended Kalman Filter (EKF) algorithm [43e48]
and Rui Xiong et al. designed the Adaptive EKF algorithm
[49e51]. Both of the two methods, which are based on the non-
linear state-space functions with first-order Taylor accuracy, are
used to estimate the SOC of Li-ion battery. However, the EKF has
several shortcomings. For example, it has highly unstable charac-
teristics during the linearization when the assumption of local
linearity is in violation [52]. Additionally, the derivation of the Ja-
cobian matrices is nontrivial and error-prone in many applications
[53]. Consequently, as an alternative approach to the state esti-
mation for non-linear systems, the Sigma Point Kalman Filter
(SPKF), which overcomes the theoretical limitations of EKF algo-
rithm, was proposed. This method has at least second-order Taylor
accuracy. The Refs. [1,2,53e55] proposed the SPKF method used for
estimating the SOC of the battery, and demonstrated that SPKF
method has more accuracy than EKF method in estimating the SOC
of the battery.

This paper will adopt the combination of ECM and Strong
Tracking Sigma Point Kalman Filter (STSPKF) algorithm to estimate
the SOC of LiMn2O4 power battery. The STSPKF algorithm as a
improve algorithm of SPKF has many advantages, e.g. requires less
computation, the system nonlinear function can be a discontinuous
function, the measured online error can be adjusted for dynamic
SOC estimation.

The remainder of this paper is organized as follows. The Section
2 conducts the power battery characteristics experiments. The
Section 3 builds an ECM for the LiMn2O4 power battery, describes
its application scenarios and uses the experimental data to identify
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