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h i g h l i g h t s

� Ideal model provides reliable SoC for any battery type and cycling condition, online.
� None of the existing estimation methods offer an ideal SoC model.
� Novel classification facilitates the identification of to-be improved aspects.
� Methods using closed loop processing are promising candidates for ideal SoC model.
� Machine learning online techniques adapt the model's parameters when a drift occurs.
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a b s t r a c t

An efficient estimation of the State of Charge (SoC) of an electrical battery in a real-time context is
essential for the development of an intelligent management of the battery energy. The main performance
limitations of a SoC estimator originate in limited Battery Management System hardware resources as
well as in the battery behavior cross-dependence on the battery chemistry and its cycling conditions.
This paper presents a review of methods and models used for SoC estimation and discusses their concept,
adaptability and performances in real-time applications. It introduces a novel classification of SoC esti-
mation methods to facilitate the identification of aspects to be improved to create an ideal SoC model. An
ideal model is defined as the model that provides a reliable SoC for any battery type and cycling con-
dition, online. The benefits of the machine learning methods in providing an online adaptive SoC esti-
mator are thoroughly detailed. Remaining challenges are specified, through which the characteristics of
an ideal model can emerge.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

At present time and in the foreseeable future, electrical batteries
will continue to be used in real-time applications such as cell
phones and laptops, hybrid and electrical vehicles, as well as in non
real-time applications like energy storage systems.

The battery state of charge (SoC) is essential to calculate the
autonomy and the available energy of the battery. An accurate SoC
is fundamental to obtain an efficient control strategy to manage

energy, as well as to guarantee a safe utilization of the battery by
preventing under or over-charge that may lead to permanent
damage. Energy management also plays a significant role in
extending and optimizing the lifetime of the battery.

The battery being a complex electrochemical system, neither its
remaining capacity nor its SoC can be directly measured. In addi-
tion, battery behavior depends on its utilization conditions like
current profile, ambient temperature and state of health. Therefore
one needs to develop a SoC estimation method, reliable and
adaptable for real-time applications.

Two difficulties constrain the performances of a real-time SoC
estimator. The first comes from the limited storage capacity and
calculation resources of the Battery Management System (BMS).
The second comes from the fact that the battery behavior depends
on its technology and the cycling conditions.

Hence, we point out the need for an efficient model able to
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estimate the SoC of any battery, regardless of its technology, under
any cycling conditions in real-time contexts and applications. Such
a model will be referred to hereafter as “ideal SoC estimator”.

By taking a closer look at the existing methods, it is clear that
none possess the characteristics of this ideal SoC estimator. In order
to obtain it, a suitable approach must be identified among the large
number of existing ones. Thus this identification can be achieved
through a comprehensive classification of existing methods.

The SoC estimation methods can be classified with respect to
different criteria. The first one is the nature of the input variables,
either measured or estimated. The second one is the type of the SoC
estimation model, which is a relationship between the input vari-
ables and SoC: physical, electrochemical or statistical regression
model. The third criterion deals with the temporal dimension:
static methods like those based on SoC�OCV lookup tables and
methods able to provide a real-time SoC estimate. Also themethods
can be classified according to the battery technology: Li-ion, Ni-
MH, Lead-acid and so on. Finally, the classification can be made
based on the mathematical tools used by the estimation method:
Kalman filter, artificial neural network, fuzzy logic, etc. However it
is important to distinguish between the tools applied to the SoC
estimation and those used to estimate the input variables like OCV
and electrical impedance. Indeed, the more the classification
criteria are relevant, the more easily we can identify the methods
that can be improved in order to provide an ideal SoC estimator and
flesh out new ways of developing it.

Several reviews of the existing SoC estimation methods are
available in the literature. The authors of [1e4] give an overview of
the methods without classifying them. The drawbacks and advan-
tages of each method are presented by the authors, but this is not
sufficient to provide an exhaustive and well structured vision on
the path to be followed to develop an ideal SoC estimator. Pop et al.
[5] give a chronological review of the estimation methods before
classifying them under three categories: direct measurement
methods, book-keeping systems that involve basic and modified
Ah-counting, and adaptive systems which are supposed to be self-
designed and to adjust automatically following the battery
agingaging and online changes in battery and user's behavior.
Kalman filter, artificial neural network and fuzzy logic approaches
were allocated to this category, but the authors acknowledge that
these methods have some important limits and cannot be consid-
ered as adaptive to all cycling conditions.

Chang [6] gives a similar classificationwhile adding to it a fourth
category of hybrid methods, each corresponding to a combination
of the first three categories.

Hence the classification of Pop [5] and Chang [6] doesn't make a
distinction between the nature of SoC models and input variables,
focusing the attention on the temporal and technological criteria.

Subsequently, the above classifications of the SoC estimation
methods does not strictly abide by all earlier mentioned criteria,
thus rendering difficult the careful examination of the aspects to be
improved.

In this paper we introduce a novel classification of the SoC
estimation methods based on their concept, their adaptability and
their performances in real-time applications.

This novel classification shows the importance of machine
learning methods in providing an ideal SoC estimator. This esti-
mator is capable of providing precise SoC values in real-time con-
figurations, and automatically adapts to the evolution of the battery
behavior, all of this while being fully independent of the battery
technology.

The rest of the paper is organized as follows. Section 2 recalls the
definition of the battery state of charge and addresses the limita-
tions of the classical definition. Section 3 introduces a novel clas-
sification of the existing SoC estimationmethods. Section 4 gives an

analysis of the most important aspects of these existing methods
and study their ability to become a generalized SoC estimation
method. Before concluding, a discussion of the characteristics of an
ideal SoC estimator and the benefits of amachine learning approach
in providing this ideal SoC estimator are conducted in Section 5. The
conclusion sums up the findings of this paper and the challenges
that remain to be addressed.

2. Battery state of charge

2.1. Definition of the state of charge

The state of charge of a battery is defined as the ratio between
the available capacity and the reference capacity, which is the
maximum capacity that can be withdrawn from the fully charged
battery under reference conditions. The reference conditions are
generally a constant current rate and a specific ambient tempera-
ture. A battery being a chemical energy storage system, there is no
sensor that directly measures. These reference and available ca-
pacities must be calculated.

2.2. Challenges in estimating the battery capacity

One way to compute the battery capacity is the “discharge test”.
It consists of discharging the battery under reference conditions to
reach the end of discharge criterion, i.e. the cutoff voltage.

However the discharge test cannot be applied in real-time
application, as well as in off-line application as it leads to a loss
of energy. The state of charge can be calculated based on the Ah-
counting equation:

SoCt ¼ SoCt0 þ

Z t

t0
It dt

Cref
(1)

where SoCt0 is the initial SoC, I the algebraic current measurement:
positive for a charge current and negative for a discharge current
and Cref the reference capacity. A numerical implementation re-
quires a temporal discretization, and then the SoC is calculated
using the following formula:

SoCt ¼ SoCt�Dt þ It � Dt
Cref

; (2)

where Dt is the sampling interval, which can be constant or vari-
able. It is clear that the precision of this method depends on the
accuracy of the current sensor as well as on the sampling interval.

Nevertheless, the reference capacity is not constant during the
battery charge/discharge; it depends on the state of health and the
cycling conditions like the current profile and the ambient tem-
perature. In a real-time context, the cycling conditions are uncon-
trolled as they depend on the user's behavior, weather conditions,
road conditions, etc. Accordingly, in some situations, the state of
charge can be lower than 0 or higher than 100. The establishment of
a deterministic function to provide a reliable value of the reference
capacity is a challenging problem.

3. Novel classification of the SoC estimation methods

From a global point of view every estimation method is char-
acterized by its input variables, the SoC estimation model and the
type of the SoC estimation processing, see Fig. 1.

The input variables can be either directly measured by a sensor,
or estimated through a physical, electrochemical or statistical
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