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h i g h l i g h t s

� Next-generation BMS will require estimates of cell electrochemical internal variables.
� Extended Kalman filter using physics-based reduced-order model finds these estimates.
� Method uses readily available measurements of voltage, current, and temperature only.
� Results agree closely to truth values and are robust to incorrect initialization.
� Automatic confidence intervals on estimates allow their use in follow-on application.
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a b s t r a c t

This paper addresses the problem of estimating the present value of electrochemical internal variables in
a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and tem-
perature. The variables that can be estimated include any desired set of reaction flux and solid and
electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to
more standard quantities such as state of charge. The method uses an extended Kalman filter along with
a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and
robust predictions having dependable error bounds for most internal variables.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses the problem of estimating the present
value of electrochemical internal variables in a lithium-ion cell in
real time, using readily available measurements of cell voltage,
current, and temperature. The variables that can be estimated
include any desired set of reaction flux and solid and electrolyte
potentials and lithium concentrations at any set of one-
dimensional spatial locations, in addition to more standard quan-
tities such as electrode or cell state of charge (SOC). The method
uses an extended Kalman filter (EKF) along with a one-dimensional
physics-based reduced-order model (ROM) of cell dynamics.

This work is motivated by the needs of next-generation battery-
management systems (BMS). A BMS needs accurate cell state esti-
mates to be able tomanage the battery pack properly to ensure safe,
robust, and reliable operation. Whereas state-of-the-art battery-
control strategies address short-term objectives using voltage-
based design limits, little has been done to improve battery per-
formance and to extend lifetime using design limits based on in-
ternal electrochemical variables. Just as a present-generation BMS
requires state-of-charge estimates to enforce voltage limits, next-
generation BMS will require estimates of internal electrochemical
variables to enforce the more advanced design limits.

It is quite common now to see articles proposing methodologies
to estimate cell state of charge. Various approaches exist [1], but
model-based methods seem to be dominant as the built-in feed-
back makes them robust, and a good model makes them accurate.

In the estimation literature as a whole, the Kalman filter (KF)
remains one of the most widely used model-based state estimators
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due to its simplicity, optimality, tractability and robustness [2].
Relying on an underlying linear model of system dynamics, the KF
uses inputeoutput measurements and probabilistic descriptions of
uncertainty to generate a minimum-mean-squared optimal esti-
mate of a system's internal state vector as it evolves in time. It is
well known, however, that application of the KF to nonlinear sys-
tems can be difficult. A popular approach to overcome this difficulty
is the implementation of an extended Kalman filter (EKF), which
essentially linearizes the nonlinear system models in such a way
that the linear KF steps can be used.

Model-based methods such as the KF and EKF require a math-
ematical descriptiondthat is, a modeldof cell dynamics as part of
the procedure for estimating internal states of the cell. In the
electrochemical literature, these models tend to fall into one of two
categories: those developed empirically by observing inputeoutput
behaviors and proposing equations to match those observations,
and those developed from physics first principles.

Empirical models of cells are most commonly realized as
equivalent-circuit models, since interconnected linear (and some-
times nonlinear) electric circuit elements are employed as analogs
to observed behaviors [3]. These kinds of models are very
commonly used in present-generation BMS implementations as
they are relatively simple to develop and can predict cell
inputeoutput behaviors well so long as great care is taken in the
selection of the model parameter values. Prior work shows good
results for SOC-estimation using EKF with equivalent-circuit
models [4e6], and indicates that model-based estimation using
equivalent-circuit models may be adequate if the BMS requires
estimates of SOC only and if cell aging can be captured sufficiently
via slow adaptation of cell resistance and capacity parameter
values.

Equivalent-circuit models can produce accurate predictions of
cell voltage; however, they do not provide insight into the internal
electrochemical variables of the cell. On the other hand, physics-
based porous-electrode models do have this ability. Doyle, Fuller,
and Newman [7,8] have developed such a physics-based model,
which comprises coupled nonlinear partial-differential equations
(PDEs). While physics-based models are far more challenging to
derive, they offer two significant advantages over equivalent-circuit
models: first, they predict cell operation outside the bounds of
previously collected data (i.e., they extrapolate well) and, second,
they describe the electrochemical internal dynamics of the cell in
addition to being able to predict cell voltage.

This latter feature is of critical importance to next-generation
BMS. The cell's internal dynamics are key to how it ages and de-
grades; thus, being able to estimate the present value of these in-
ternal electrochemical variables using a physics-based model is key
to predicting and invoking controls to avoid degradation.

Control algorithms based on knowledge of the internal elec-
trochemical state have the potential to expand the performance
and extend the life of cells. They can predict power limits with
respect to electrode surface depletion/saturation conditions and
with respect to side reactions responsible for damage and sudden
loss of power [9,10]. For example, some early “full-information”
controls (i.e., which assume perfect knowledge of cell internal
variables, as precursor work to practical implementable methods
which must estimate the values of these variables using only
measurements of voltage, current, and temperature) [11] shows
that electrochemically limited pulse charging a 6 A h cell to the
same negative-electrode phase-potential fs�fe at the negative-
electrode/separator boundary as encountered at equilibrium at
100% SOC increases usable charge power by 22% and usable energy
by 212% vs. voltage-limited charging.

A practical and implementable feedback control scheme
particularly well suited to extending battery cell life while yielding

maximum performance is model-predictive control (MPC), which
is gaining popularity throughout industry in other applications
[12]. Employing a “look-ahead” strategy, MPC can foresee dynamic
changes before they happen and efficiently compute stepwise-
optimal control to achieve a quadratic performance objective.
Most importantly however, MPC is able to handle hard (as well as
soft) constraints on designated problem variables. The potential
employment of MPC for improved cell-level battery control is
directly dependent on the availability of certain electrochemical
variables internal to the lithium ion cell. Since these variables are
not easily (or at all) measurable, theymust be estimated from easily
obtained voltageecurrentetemperature information during cell
operation. The estimates provided by EKF are highly compatible for
use with MPC.

At this point in history, however, the computational complexity
of porous-electrode PDE models precludes their use by EKF and
real-time control systems. Instead, accurate reduced-order
approximate models, which can predict both the cell voltage and
internal electrochemical variables, are needed.

For example, Santhanagopalan et al. used single-particle models
and simplified porous-electrode models in conjunction with
extended and sigma-point Kalman filters to estimate cell SOC
[13,14]. Di Domenico et al. used simplified averaged electro-
chemical models with both continuous-time linear Kalman filters
and extended Kalman filters to estimate cell SOC and particle sur-
face concentration at the current collectors [15,16]. Neither of these,
however, addressed the problem of estimating general internal
electrochemical variables at arbitrary points in the cell.

Other efforts similar to this present work include papers by
Klein et al., which assumes constant electrolyte concentration and a
polynomial approximation to solid concentration to arrive at a
partial-differential algebraicmodel, sampled on a coarse grid across
the cell, which is then used by an output error injection state
observer [17,18]. This model is of higher computational complexity
than the one we use in this work, and the output error injection
observer does not provide confidence bounds on the estimated
states. While the authors state that their observer can estimate the
values of internal electrochemical variables, they show results of
SOC estimation only.

Perhaps the most similar work is that of Smith et al. [10,19].
These authors simplify the electrochemical model using a transfer-
function approach, as do we, which forgoes the necessity of solving
PDEs on a spatial grid. However, they do not employ the nonlinear
corrections and model blending that characterize the model that
we use, and which significantly improvemodel predictions across a
wide range of state-of-charge and temperature, and at high rates.
Further, they used a linear Kalman filter on their fully linear model,
as opposed to the nonlinear EKF used herein. And, while they state
that their methodology can estimate internal electrochemical var-
iables, they do not derive the extra steps needed to correctly esti-
mate the variables and the confidence interval of the estimate from
the a posteriori model state vector estimate and covariance, and
they show results of cell and electrode SOC estimation only.

In this work, we use EKF with a one-dimensional physics-based
reduced-order model of lithium-ion dynamics. This five-state
discrete-time model is of similar computational complexity to an
equivalent-circuit model, and gives very good predictions of cell
voltage as well as the cell internal variables. We have presented this
model elsewhere in a series of three papers: the first paper intro-
duced the “discrete-time realization algorithm” (DRA) as a sub-
space projection method for converting a transcendental transfer
function into a discrete-time state-space reduced-order model [20].
The second paper showed how to find transcendental transfer
functions corresponding to lithium-ion internal cell dynamics [21],
and invoked the DRA to create a ROM that is linearized to give
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