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HIGHLIGHTS

e Developed a self-cognizant dynamic system approach for battery health management.
o Can adaptively recognize battery system models over time considering degradation.

e Employed a feed-forward neural network (FFNN) as the intelligence unit.

o Integrated the FFNN with the Kalman filters to track battery system dynamics.

o Validated the approach with battery experimental data for SoC and SoH estimations.
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Prognostics and health management (PHM) is an emerging engineering discipline that diagnoses and
predicts how and when a system will degrade its performance and lose its partial or whole functionality.
Due to the complexity and invisibility of rules and states of most dynamic systems, developing an
effective approach to track evolving system states becomes a major challenge. This paper presents a new
self-cognizant dynamic system (SCDS) approach that incorporates artificial intelligence into dynamic
system modeling for PHM. A feed-forward neural network (FFNN) is selected to approximate a complex
system response which is challenging task in general due to inaccessible system physics. The trained
FFNN model is then embedded into a dual extended Kalman filter algorithm to track down system dy-
namics. A recursive computation technique used to update the FFNN model using online measurements
is also derived. To validate the proposed SCDS approach, a battery dynamic system is considered as an
experimental application. After modeling the battery system by a FFNN model and a state-space model,
the state-of-charge (SoC) and state-of-health (SoH) are estimated by updating the FFNN model using the
proposed approach. Experimental results suggest that the proposed approach improves the efficiency
and accuracy for battery health management.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

to assess the health condition of an operating system, predict its
remaining useful life (RUL) in real-time, and reduce catastrophic

Prognostics and health management (PHM) for machinery has
attracted researchers' and industrial companies' attention in recent
decades. A wide variety of tools and techniques for PHM have been
developed and reported that explore new theories and are imple-
mented in practical applications. Most commonly, PHM is defined
as a synthesized science employing a series of tools and techniques
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failures with failure mitigation/recovery actions [1]. PHM carries
out two specific tasks for the health management of an operating
system over its life cycle: (i) PHM collects sensory signals from the
system, extracts from the sensory signals health-relevant features
and system characteristics, and diagnoses system faults and
degradation; and (ii) PHM captures the system degradation trend
based on the current and previous health conditions of the system,
and predicts its future health condition and RUL.

Several algorithms and techniques have been developed in the
literature for system modeling and prognostics applications by
researchers. As a statistical model, autoregressive moving average
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(ARMA) model has been applied to investigating system modeling
and predicting future behavior of systems based on time- or cycle-
based signal data [2]. Fuzzy logic offers another way to describe
systems in the presence of uncertain and unclear data. Instead of
gaining a full understanding of the underlying mechanisms of a
system, fuzzy logic is dedicated to exploring complex systems in a
high level of abstraction in order to develop a decision making
system [3—6]. Another technique that has received great attention
from researchers is artificial neural networks (ANN). By imitating
the structures and mechanisms of neural networks in human brain,
an ANN, which connects multiple layers of artificial notes together
to form a network, is capable of modeling a complex system
without the need of expert knowledge of the system's internal
workings. Due to its data-driven nature, the ANN has been suc-
cessfully employed and developed to model complex systems for
various applications [7—9]. As a state-of-the-art classification and
regression methodology, support vector machine (SVM) has been
very widely used to solve diagnostic and prognostic problems [10].
By using a kernel function, SVM implicitly maps its low dimen-
sional inputs to a high dimensional feature space, which essentially
transforms a low dimensional nonlinear problem to a high
dimensional linear problem. With the regulation of the KKT con-
ditions (Karush—Kuhn—Tucker conditions), SVM extracts a series of
support vectors in the high dimensional feature space from the
training data and uses these support vectors to build the classifi-
cation or regression equations. Another data-driven approach,
Gaussian process (GP) regression, provides a very powerful solution
for system regression. It has been used in various applications in the
PHM field [11,12]. All of the above algorithms are data-driven ap-
proaches which only rely on pure data collected from system pa-
rameters and measurements. However, if a system model (or a
physics-based model) is clearly defined based on physical laws,
the Bayesian based approaches are much more dominated solution
in practical applications. The most outstanding approach is Markov
chain Mote Carlo (MCMC) method, which is a simulation-based
method commonly applied in several applications with physics-
based models [13—15].

With the increase in system complexity, it has become more
difficult to model a complex system through the use of an analytical
physics-based model in many practical applications. Data-driven
approaches, as mentioned earlier, provide an alternative way to
model the complex system relying exclusively on the measured
data rather than the underlying physics of the system. However, as
the system evolves and degrades over time, a data-driven model
trained using historical data may lose accuracy and become less
predictive. A commonly used strategy to resolve this issue is to
incorporate the most recent data set into the original training data
set and refine the data-driven model using the augmented training
data set. As a result, the refined model more accurately predicts the
most recent behavior of the system. Although this strategy at-
tempts to adaptively refine the data-driven model by updating the
training data set, it is still far from being applied in practice due to
two obvious shortcomings. First, retraining a data-driven model is
time-consuming and of low computational efficiency. In cases
where a massive amount of data is continuously being collected
and the system is evolving rapidly over time, the retraining would
be too slow for the retained model to keep up with the system
evolution. The second issue arises when only a negligibly small
amount of new data is added to a large training set and, due to the
dominance of historical data, the retraining is unable to effectively
update the model to reflect the most recent system behavior.

A state-space representation is a powerful mathematical tool for
estimating the hidden states (e.g., health condition and perfor-
mance) of a dynamic system from the system's visible states (e.g.,
pressure and temperature) that can be measured with sensors. A

state-space model consists of a transition function which describes
the evolution of states of a system and an observation function
which represents the relations between observations and states of
the system. As a time-domain approach, the state-space model is
effective in addressing a dynamic system problem. Several online
estimation techniques have been developed based on the state-
space model to track the hidden states of a dynamic system over
time. Kalman filter (KF) and particle filter (PF) are representative of
these techniques [16—20]. Even though the online estimation
techniques are capable of achieving accurate tracking of system
hidden states, their use is largely limited by the aforementioned
difficulties in modeling a complex dynamic system.

To address the above challenges, this paper proposes a self-
cognizant dynamic system (SCDS) approach. By combining the
advantages of both data-driven approaches and online estimation
techniques, the proposed SCDS approach not only resolves the low
efficiency and accuracy issues of data-driven approaches due to the
evolving system behavior, but also eliminates the dependency of
online estimation techniques on the physics-based modeling of the
dynamic system. The main idea of the proposed approach is the
integration of an intelligent system modeler with an online esti-
mator to build a self-cognizant dynamic system. The intelligent
system modeler closely monitors and learns the dynamic system
behavior, and actively seeks adaptations of the dynamic system
model to better emulate the system behavior. The online estimator
not only estimates the hidden states based on the measured and
predicted visible states, but also updates the intelligent system
modeler by using online observations, in order to gain a better
understanding of the dynamic system. To implement the self-
cognizant dynamic system, this work employs a feed-forward
neural network (FFNN), the basic architecture of ANN, as the
intelligent system modeler and a dual extended Kalman filter
(DEKEF), the nonlinear version of KF for dual state estimation, as the
online estimator. The FFNN allows for the intelligent adaptation of
the system model to the changing dynamic system, while the DEKF
enables the dual estimation of two hidden states, namely the state
and model parameters.

The rest of this paper is organized as follows. Section 2 presents
the theoretical foundation the numerical implementation of the
proposed SCDS approach. Section 3 introduces the background of a
lithium-ion (Li-ion) battery system and applies the SCDS approach
to addressing state of charge (SoC) and state of health (SoH) esti-
mation. Section 4 presents an experimental case study to demon-
strate the effectiveness of the SCDS approach in Li-ion battery
health management. A brief conclusion and future work are pro-
vided in Section 5.

2. Self-cognizant dynamic system approach

This section introduces the proposed SCDS approach. Section 2.1
presents the structure of a self-cognizant dynamic system. Section
2.2 discusses the implementation of the SCDS approach using the
DEKF technique and the FFNN model.

2.1. Structure of self-cognizant dynamic system

Fig. 1 depicts the structure of a self-cognizant dynamic system,
which includes a dynamic system and a self-cognizant system. The
goal of the self-cognizant system is to perceive the dynamic system
with the help of an intelligent system modeler and an estimator.
The hidden states (e.g., health condition and performance) of the
dynamic system cannot be sensed by the self-cognizant system,
while the visible states (e.g., pressure and temperature) that are
affected by the hidden states can be measured using sensors. By
utilizing the measurable visible states of the dynamic system, the
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