Journal of Power Sources 275 (2015) 419-428

Contents lists available at ScienceDirect

Journal of Power Sources

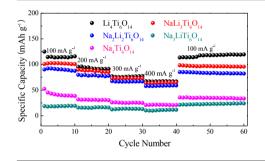
journal homepage: www.elsevier.com/locate/jpowsour

Phase composition and electrochemical performance of sodium lithium titanates as anode materials for lithium rechargeable batteries

Kaiqiang Wu, Jie Shu^{*}, Xiaoting Lin, Lianyi Shao, Peng Li, Miao Shui, Mengmeng Lao, Nengbing Long, Dongjie Wang

Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang Province, People's Republic of China

HIGHLIGHTS


- Na_xLi_{4-x}Ti_6O_{14} (0 \le x \le 4) samples are prepared by a solid state reaction.
- Different Na/Li ratios result in the formation of different titanates.
- Phase composition of Na_xLi_{4-x}Ti₆O₁₄ is identified and compared.
- Electrochemical behaviors of ${\rm Na}_{x-}{\rm Li}_{4-x}{\rm Ti}_6{\rm O}_{14}$ are different from each other.

ARTICLE INFO

Article history: Received 28 August 2014 Received in revised form 7 November 2014 Accepted 8 November 2014 Available online

Keywords: Sodium lithium titanate Phase identification Electrochemical behavior Anode material Lithium-ion batteries

G R A P H I C A L A B S T R A C T

ABSTRACT

A series of Na_xLi_{4-x}Ti₆O₁₄ ($0 \le x \le 4$) are prepared by solid-state method and their structures, morphologies and electrochemical properties are compared by changing the Na/Li atomic ratio. It can be found that two single-phase samples of Na₂Li₂Ti₆O₁₄ and Na₄Ti₆O₁₄ and three multi-phase samples of Li₄Ti₆O₁₄ (Li₄Ti₅O₁₂/TiO₂), NaLi₃Ti₆O₁₄ (Na₂Li₂Ti₆O₁₄/Li₄Ti₅O₁₂/TiO₂) and Na₃LiTi₆O₁₄ (Na₂Li₂Ti₆O₁₄/Na₂Ti₃O₇) can be formed by using a stoichiometric ratio of starting materials based on the formula of Na_xLi_{4-x}Ti₆O₁₄. Besides, different Na/Li atomic ratios in Na_xLi_{4-x}Ti₆O₁₄ also induce the morphology evolution shifting from round-shape to polyhedron-shape, and then to square-shape with the increase of Na content. Electrochemical tests show that Li₄Ti₆O₁₄ delivers the highest charge capacities of 116 mAh g⁻¹ at 100 mA g⁻¹, 91.5 mAh g⁻¹ at 200 mA g⁻¹, 77.5 mAh g⁻¹ at 300 mA g⁻¹ and 66.9 mAh g⁻¹ at 400 mA g⁻¹. It suggests that Li₄Ti₆O₁₄ is the most potential lithium storage material among all the Na_xLi_{4-x}Ti₆O₁₄ samples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Lithium-ion batteries (LIBs), due to their high energy density and long cycle life, are widely used as the power supplies of electric vehicles and hybrid electric vehicles [1-5]. To replace the unsafe

carbonaceous anode materials, various titanates (such as Li₄Ti₅O₁₂, Li₂SrTi₆O₁₄, Li₂Ti₃O₇, Li₂ZnTi₃O₈, Li₂Na₂Ti₆O₁₄, etc.) have been developed as potential anode materials in high-power LIBs for their high operating potential plateau (>1.0 V versus Li/Li⁺) and lowstrain characteristic in the past decade [6–11]. However, most of titanates suffer from low electronic conductivity $(10^{-13} - 10^{-12} \text{ S})$ and Li⁺ cm^{-1}) diffusion coefficient $(10^{-13}-10^{-10} \text{ cm}^2 \text{ s}^{-1})$ [12–14], which hinder their commercial application.

^{*} Corresponding author. E-mail addresses: sergio_shu@hotmail.com, shujie@nbu.edu.cn (J. Shu).

To find a suitable anode, it is necessary to make a comparison of structural characteristic and electrochemical behavior in the same series of titanates. As for $Li_2MTi_3O_8$ (M = Zn, Co, Cu, Mn, Mg) [15-19], it is found that Li₂CoTi₃O₈, Li₂Co_{0.5}Zn_{0.5}Ti₃O₈, and Li₂ZnTi₃O₈ have the same cubic structure with a space group of P4₃32. However, Li₂CuTi₃O₈ shows the same cubic structure but a different space group of Fd-3 m among the similar complex spinel titanates of Li₂CuTi₃O₈, Li₂Cu_{0.5}Zn_{0.5}Ti₃O₈ (P4₃32) and Li₂ZnTi₃O₈ (P4₃32) [20]. It indicates that different element substitution and content may result in the structural evolution of titanate. Besides, both reports reveals that $Li_2M'_{0.5}M''_{0.5}Ti_3O_8$ with a space group of P4₃32 has higher reversible capacity and better rate property than that of pristine Li₂MTi₃O₈. Similar phenomena can be observed for the $Li_2MTi_6O_{14}$ series (M = Ba, Sr, Na, Pb) [11,21–23]. Different from $Li_2MTi_3O_8$ and $Li_2MTi_6O_{14}$, $Li_{4-x}Na_xTi_5O_{12}$ ($0 \le x \le 4$) samples show quite different phases (Li₄Ti₅O₁₂, NaLiTi₃O₇, Li₂TiO₃ and Na₄Ti₅O₁₂) and electrochemical behaviors with different Na/Li ratios [24]. As a result, Li₄Ti₅O₁₂ was proved to be the most promising anode among the $Li_{4-x}Na_xTi_5O_{12}$ ($0 \le x \le 4$) series. Similar phenomena can be observed for the $Li_{1+x}Ti_{2-x}O_4$ series [25–28]. For comparison, high purity phases were indexed with the same structure and the space group of R-3c for all the $Li_{1-x}Na_xTi_2(PO_4)_3$ ($0 \le x \le 1$) samples [29]. It can be also found that the unit cell dimensions anisotropically gradually increased with the increase of Na content, and the reversible capacity reached the maximum value with x = 0.5 by using $Li_{1-x}Na_xTi_2(PO_4)_3$ ($0 \le x \le 1$) as anode materials for sodium ion batteries. All these previous reports suggest that different compounds can be found as proper candidates for energy storage in different titanate series (end-member titanate in Li_{4-x}Na_xTi₅O₁₂ and Li_{1+x}Ti_{2-x}O₄ series, and middle-member titanate in Li₂MTi₃O₈ and $Li_{1-x}Na_{x}Ti_{2}(PO_{4})_{3}$ series).

In former researches, one of titanates, Na₂Li₂Ti₆O₁₄, as a novel promising anode material with low potential plateau (about 1.25 V) was studied in LIBs [30–33], which can offer a higher whole cell potential than Li₄Ti₅O₁₂. To find the most potential anode in the same titanate series with Na₂Li₂Ti₆O₁₄, it is better to make a comparison of structural characteristic, operating potential, reversible capacity, diffusion coefficient and rate property between Na₂Li₂Ti₆O₁₄ and other similar titanates from the same series (such as Li₄Ti₆O₁₄, NaLi₃Ti₆O₁₂, Na₃LiTi₆O₁₄ and Na₄Ti₆O₁₄). Based on the investigation on Na₂Li₂Ti₆O₁₄, a series of Na_xLi₄–xTi₆O₁₄ ($0 \le x \le 4$) series are prepared by solid-state method at the first time in this paper with the different of Na/Li atomic ratios. It can be found that different phases form with different Na/Li atomic ratios in the precursor. Their structural characteristics, surface morphologies and electrochemical properties are tested and compared in detail.

2. Experimental

Na_xLi_{4-x}Ti₆O₁₄ ($0 \le x \le 4$) samples with different Na contents (x = 0, 1, 2, 3 and 4) were synthesized by a traditional solid-state method. The stoichiometric amounts of CH₃COOLi·2H₂O (Aladdin Chemistry), CH₃COONa·3H₂O (Aladdin Chemistry), TiO₂ (Aladdin Chemistry) were mixed with oxalic acid dehydrate chelating agent (Aladdin Chemistry) under various Na/Li molar ratios and pretreated by high energy ball-milling in ethanol at 400 rpm rotational speed for 15 h. The obtained precursor slurry was dried at 80 °C and then calcinated at 900 °C for 10 h in air atmosphere. Based on the different Na/Li molar ratios, the as-prepared five Na_xLi_{4-x}Ti₆O₁₄, Na₂Li₂Ti₆O₁₄, Na₃LiTi₆O₁₄ and Na₄Ti₆O₁₄, respectively.

The crystal structure of Na_xLi_{4-x}Ti₆O₁₄ ($0 \le x \le 4$) samples was detected by Bruker AXS D8 Focus X-ray diffraction (XRD) instrument with Cu K α radiation. Samples were observed by a scan angle range from 5 to 80° with a step size of 0.02° and a count time of 1 s.

The particle morphologies and structures of five samples were observed by Hitachi S3400 scanning electron microscopy (SEM), JEOL JEM-2010 high resolution transmission electron microscopy (HRTEM) and corresponding selected area electron diffraction (SAED).

For electrochemical evaluations, the working electrodes were composed of Li4Ti6O14, NaLi3Ti6O14, Na2Li2Ti6O14, Na3LiTi6O14 or Na₄Ti₆O₁₄ as active material, carbon black as conductive additive and polyvinylidene fluoride as binder with a weight ratio of 8:1:1. These materials were uniformly mixed in agate mortar with Nmethylpyrrolidinone as a solvent. Then, the homogeneous slurry was spread on a Cu foil by a doctor-blade technique and dried at 120 °C in a vacuum oven for 24 h. After that, the dried thin film was punched into discs with a diameter of 15 mm and used as working electrode for electrochemical investigations. The homemade Swagelok cells were assembled in an Ar-filled glove box, which prevented the sample exposure to oxygen, nitrogen and water. In the half cells, lithium disc was used as counter electrode and Whatman glass fiber was treated as separator. The Li-containing electrolyte was a 1 mol L^{-1} solution of LiPF₆ dissolved in ethylene carbonate and dimethyl carbonate with a volume proportion of 1:1.

The charge–discharge properties of Swagelok cells were measured with a current density of 50 mA g⁻¹ between 1.0 and 3.0 V by multi-channel Land battery test system (Wuhan Jinnuo, China) at room temperature. Cyclic voltammograms (CVs) were carried out between 1.0 and 3.0 V with a scan rate of 0.1 mV s⁻¹ by CHI 1000B electrochemical workstation (Shanghai Chenhua, China) at room temperature. Electrochemical impedance spectroscopy (EIS) analysis was carried out by CHI 660D electrochemical workstation with the frequency range of 10^5 – 10^{-2} Hz.

3. Results and discussion

XRD patterns of $Na_xLi_{4-x}Ti_6O_{14}$ ($0 \le x \le 4$) samples are shown in Fig. 1. It can found that an obvious structural transformation can be observed with different Na/Li molar ratios in Na_xLi_{4-x}Ti₆O₁₄ $(0 \le x \le 4)$ series. Fig. 1a shows the XRD pattern of as-prepared Li₄Ti₆O₁₄ powder, which can be indexed to Li₄Ti₅O₁₂ phase (JCPDS card No. 49–0207) as the dominant phase and rutile TiO₂ phase as the impurity phase with its diffraction peaks at 27.5, 36.1, 41.3, 54.4 and 69.1° (JCPDS card No. 87-0920) as marked by green square (in web version). This phenomenon, in which rutile TiO₂ phase coexists with Li₄Ti₅O₁₂ phase by solid state synthesis way, can be also observed in the former studies on the preparation of Li₄Ti₅O₁₂ with improper Li/Ti molar ratio in the precursor [34–37]. In these tasks, the absence of lithium source always results in the formation of coexisted $TiO_2/Li_4Ti_5O_{12}$ phases. With one mole of Li atoms is substituted by Na atoms in $Na_xLi_{4-x}Ti_6O_{14}$ sample (x = 1, $NaLi_{3-}$ Ti₆O₁₄), Na₂Li₂Ti₆O₁₄ phase with orthorhombic structure (JCPDS card No. 52-0690) becomes the dominant phase in the as-prepared NaLi₃Ti₆O₁₄ powder. At the same time, the feature peaks of rutile TiO₂ phase (27.5°) marked by green square (in web version) and Li₄Ti₅O₁₂ phase (35.6, 43.3, 57.3 and 63.0°) marked by brown triangle (in web version) as the impurity phases are also indexed in Fig. 1b. For comparison, pure Na₂Li₂Ti₆O₁₄ phase with orthorhombic structure can be observed in Fig. 1c, when the molar ratio of Li to Na is 1:1 in the precursor of $Na_xLi_{4-x}Ti_6O_{14}$ sample (x = 2) that is well consistent with the former study results on the preparation of Na₂Li₂Ti₆O₁₄ by a similar solid state synthesis way or an oxalic acid assisted sol-gel route [31-33]. The orthorhombic structure of Na₂Li₂Ti₆O₁₄ phase is composed of a framework of intercalated edge and corner-sharing distorted TiO₆ octahedrons, and isolated and distorted LiO₄ tetrahedrons. Besides, its lattice parameters are a = 16.4784, b = 5.7358 and c = 11.227 Å with the space group of Fmmm. With one more Li atoms replacement by Na Download English Version:

https://daneshyari.com/en/article/7734485

Download Persian Version:

https://daneshyari.com/article/7734485

Daneshyari.com