Journal of Power Sources 274 (2015) 286-294

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Plasma-assisted catalytic dry reforming of methane: Highly catalytic performance of nickel ferrite nanoparticles embedded in silica

Xiaogang Zheng, Shiyu Tan, Lichun Dong, Shaobo Li, Hongmei Chen*

College of Chemistry and Chemical Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, PR China

HIGHLIGHTS

• NiFe₂O₄ nanoparticles (<10 nm) are embedded in porous silica.

• NiFe₂O₄#SiO₂ presents a high catalytic performance for plasma-assisted dry reforming.

• SiO₂ shells restrain the aggregation of Ni-Fe alloy particles.

• NiFe₂O₄#SiO₂ catalyst effectively suppresses carbon formation.

ARTICLE INFO

Article history: Received 26 July 2014 Received in revised form 29 September 2014 Accepted 12 October 2014 Available online 18 October 2014

Keywords: Dry reforming of methane Synergistic effect Nickel ferrite Embedded structure Non-thermal plasma

Spinel nickel ferrite nanoparticles (NiFe₂O₄ NPs) embedded in silica (NiFe₂O₄#SiO₂) was prepared to enhance the reaction performance of the dry reforming of methane in a coaxial dielectric barrier discharge reactor. NiFe₂O₄ NPs of around 10 nm were effectively embedded in porous SiO₂ NPs (~100 nm in diameter). Compared to the supported Ni-based catalysts (Ni/ γ -Al₂O₃, Ni–Fe/ γ -Al₂O₃, Ni–Fe/SiO₂, and NiFe₂O₄, the NiFe₂O₄#SiO₂ catalyst placed at the discharge zone exhibited excellent catalytic performance and high resistance to carbon formation during dry reforming under ambient conditions without the involvement of extra heat. The synergetic effect between the non-thermal plasma and the NiFe₂O₄#SiO₂ catalyst favored the conversion of CH₄ and CO₂ into syngas. The results indicated that the special structure of the as-synthesized NiFe₂O₄#SiO₂ catalyst was capable of restraining the aggregation of Ni–Fe alloy and suppressing the carbon formation in the reforming process.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The use of greenhouse gases (GHG), such as carbon dioxide (CO_2) and methane (CH_4) , has attracted considerable attention because of its potential to relieve the existing greenhouse effect and produce relevant chemical products [1-3]. The dry reforming of CH₄ and CO₂ is a desirable way of producing syngas (CO and H₂) with a low molar ratio of H₂ to CO, which is the primary chemical feedback for the gas-based petrochemical and liquid fuel processes, such as Fischer–Tropsch synthesis and methanol synthesis. Nibased catalysts have been widely investigated for the dry reforming of methane because of the rich nickel content and the low cost compared to the noble metals [4-10]. Nevertheless, the dry reforming of CH₄, a typical endothermic reaction operated above 973 K, suffers from high energy consumption, harsh operating conditions, catalytic deactivation because of coke formation, and

the sintering of supported metal catalysts [7-10]. To balance the drawbacks with the excellent catalytic performance, new catalysts with high resistance to carbon deposition are in urgent need for the dry reforming of CH₄ and CO₂.

Dielectric barrier discharge (DBD) plasma may provide an alternative solution to the problem encountered during the conventional catalytic dry reforming of CH₄ since Siemens reported its first experimental investigation of simple barrier discharges in 1857 [11–19]. As typical non-thermal plasma, DBD plasma can initiate a series of ionization and chemical processes for the dry reforming of CH₄, which are far from thermodynamic equilibrium under ambient operating conditions [11,15,16]. It is indicated that the chemical reactions in DBD are governed by electron temperature instead of the thermal processes or gas temperature. There are several drawbacks in dry reforming with the DBD plasma alone, including low conversion of reactants, poor selectivity of desired products, and low energy efficiency [20–24]. Numerous studies on the dry reforming of CH₄ suggested that the synergic effect of the combination between the plasma and the catalysts significantly

^{*} Corresponding author. Tel./fax: +86 23 65111179. E-mail address: chenhongmei926@163.com (H. Chen).

enhance the reaction performance in conversion and selectivity [25-34]. Nevertheless, less attention has focused on the catalytic deactivation caused by coke formation during the dry reforming process. For plasma-assisted dry reforming, coke deposition arises from the decomposition of CH₄ because the dissociation energy of CH₄ (4.51 eV) is lower than that of CO (11.09 eV) [7,9,32].

Small particle size and uniform dispersion of metallic particles seem to be capable of reducing carbon deposition and improving the stability of the catalysts [32,33]. In this context, the method for the preparation of small particles of nickel (Ni, <20 nm) by the reduction of spinel oxide (NiM₂O₄) has attracted special attention [35–37]. Ni and its bimetallic alloy (such as Ni–Fe, Ni–Co, Ni–Cu) are homogenously dispersed on a stable oxidic matrix, which exhibits excellent catalytic performance and high resistance to coking. Previous papers suggested that the catalytic activity of spinel nickel ferrite (NiFe₂O₄) prepared using traditional method is unsatisfactory for the dry reforming of CH₄ [10,35]. Large particles of the γ -NiFe alloy and the instability of iron oxides formed by the reduction of NiFe₂O₄ could account for the poor activity and the unsatisfied molar ratio of H₂/CO [10]. Ni-based catalysts with superior structures are being developed to control the aggregation of Ni-based alloy particles and suppress the carbon deposition.

Recent literature reported that metal nanoparticles (NPs) embedded in porous material present high catalytic activity and good durability for the dry reforming of CH₄ [38–40]. The monodispersed and ultrafine active metal particles in an embedded structure can effectively hinder coke formation and suppress the sintering of the active metal [32,39]. Therefore it is possible to encapsulate ultrafine spinel NPs such as NiFe₂O₄ within porous silicon (SiO₂). This method can ensure a higher dispersion of NiFe₂O₄ NPs, leading to improvement in sintering of NiFe₂O₄ #SiO₂ was prepared by the modified Stöber approach and used to investigate the dry reforming of CH₄ and CO₂ in a DBD reactor under ambient conditions without the involvement of extra heat.

2. Experimental

2.1. Materials

All of the chemicals were of analytical grade and used as commercially obtained without any further purification. Ferric nitrate hexahydrate (Fe(NO₃)₃·6H₂O, >98%), aluminum oxide (γ -Al₂O₃, >99.5%), Oleic acid (C₁₈H₃₄O₂, >98.5%), sodium oleate (C₁₈H₃₃NaO₂, >98%), and nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O, >98%) were purchased from Chengdu Kelong Chemical Reagent company. Absolute ethanol (C₂H₅OH, >99.7%), ammonia solution (NH₃·H₂O, >25%), and tetraethyl orthosilicate (TEOS, C₈H₂₀O₄Si, >99%) were purchased from Chongqing Chuandong Chemical (Group) Co., Ltd. Polyethylene glycol (PEG-20000, HO(C₂H₄O)_nH, >99.8%) and poly-(vinyl-pyrrolidone) (PVP-K30, (C₆H₉NO)_n, >99.5%) were purchased from Aladdin Industrial Corporation.

2.2. Preparation of catalysts

NiFe₂O₄ NPs were prepared by the modified hydrothermal method. 3 mmol Ni(NO₃)₂·6H₂O and 6 mmol FeCl₃·6H₂O were dissolved in 200 mL ethanol solution (50 wt%) by vigorously stirring at room temperature for 1.5 h. 10.0 g sodium oleate and 10.0 g PEG-20000 were added into the above solution and continuously agitated for 3 h at room temperature. The as-prepared solution was transferred to a 500 mL Teflon-lined stainless autoclave and subjected to a hydrothermal treatment at 467 K for 12 h. After cooling the solution to room temperature, hexane and ethanol solutions were added to the synthesized solution to form NiFe₂O₄ NPs. Then

the powder was obtained by centrifugation and dried at 353 K for 12 h in an oven.

The NiFe₂O₄#SiO₂ sample was prepared by the modified Stöber method. 0.1 g NiFe₂O₄ NPs and 1.5 g PVP-K30 were added to 200 mL ethanol solution (80 wt %) with ultrasonic dispersion at 323 K for 0.5 h, and the suspension was vigorously stirred at room temperature for 4 h. 5 mL of TEOS and 5 mL of NH₃·H₂O were injected into the above solution system. After stirring at 323 K for 10 h, the suspension was separated by centrifuge at 4500 rpm for 10 min, washed with ethanol and water, and dried at 373 K for 6 h. The sample was eventually calcined at 873 K for 3 h in air to obtain NiFe₂O₄#SiO₂.

Supported Ni catalysts (including Ni/ γ -Al₂O₃, Ni–Fe/ γ -Al₂O₃, and Ni–Fe/SiO₂) were prepared by the conventional impregnation method. γ -Al₂O₃ bulks were commercially obtained, while SiO₂ particles were synthesized by hydrolysis and polycondensation of TEOS. γ -Al₂O₃ or SiO₂ was added to the Ni(NO₃)₂·6H₂O solution or the mixed solution of Ni(NO₃)₂·6H₂O and Fe(NO₃)₃·9H₂O at 343 K and then dried at 363 K. The dried samples were calcined at 873 K in air for 3 h.

2.3. Plasma system

Fig. 1 shows a schematic diagram of the setup for the experiment of dry reforming assisted by plasma and catalysts, which is similar to the previous work [32]. The mixed gases of CH₄ and CO₂, controlled by mass flow controllers, were injected into the annular gap between the inner ceramic-tube (φ 16 × 2) and the outer glass-tube (φ 25 × 2.5). The discharge gap and the discharge length are 2 mm and 150 mm, respectively. The glass-tube, covered with wire entanglements, was connected to a high voltage supply while the ceramic-tube, filled with metal aluminum powder, served as the grounded electrode. A 30 KV AC voltage power was employed to operate the discharge of the plasma generator and the frequency range was 5–20 KHz. The voltage amplitude caused corresponding changes in the output power when it was adjusted.

2.4. Characterization of catalysts

The X-ray powder diffraction (XRD) of catalysts was recorded with the Bruker D8 Advance X-ray Powder Diffractometer.

Fig. 1. Schematic diagram of the DBD plasma.

Download English Version:

https://daneshyari.com/en/article/7734645

Download Persian Version:

https://daneshyari.com/article/7734645

Daneshyari.com