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a b s t r a c t

The associated flow rule is commonly supposed to be one of the cornerstones of classical plasticity theory
for metals though some experimental results do not accord with it. This paper investigates the flow rule
of plastic deformation rate for von Mises materials exhibiting kinematic hardening. It is found that the
associated flow rule is not valid in rigid-plastic deformations. The associated flow rule for von Mises
materials exhibiting kinematic hardening is modified. The modified associated flow rule implies that the
vector of plastic deformation rate need not be perpendicular to the yield surface in nine-dimensional
stress space. Finally, the principle of maximum plastic dissipation is modified as well.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The associated flow rule of plastic deformation rate and the
convexity of the yield surface in stress space play an important role
in the classical plasticity theory of hardening metals (e.g., Nemat-
Nasser, 1983 and Khan and Huang, 1995). However, Spitzig and
Richmond (1984) found that hydrostatic pressure dependence of
the flow stress does not require an associated plastic volume
change in metals. Besides, many researchers also questioned the
validity of the associated flow rule in the absence of pressure-
sensitive effect. Kuroda and Tvergaard (2001) showed that the
associated flow rule is only valid at initial yield and the direction of
the plastic deformation rate depends on the stress or the defor-
mation rate when a vertex forms on the yield (loading) surface.
Hashiguchi (2005) proposed a non-associated flow rule by using
the sub-loading surface, the tangential yield surface and the
tangential loading criterion for tangential plastic deformation rate,
which describes the components of plastic deformation rate
tangential to the yield surface appropriately. Stoughton, 2002,
Stoughton and Yoon (2004) proposed a model for sheet metal
forming in which the plastic potential and the yield functions are
defined by two different quadratic functions of stress tensor
respectively. The fact that experimental results do not accord with
the associated flow rule prompts us to examine it theoretically. We
will also investigate the principle of maximumplastic dissipation as
it can lead to the associated flow rule.

2. General background

Rigid-plastic solid can be regarded as a special case of elas-
ticeplastic solids. Loaded rigid-plastic solid can produce very small
elastic deformations before it yields. However, the elastic defor-
mation rate can be ignored compared with the plastic deformation
rate in the region of elasticeplastic deformation. For rigid-plastic
solid, we have

DzDp (2.1)

where D denotes the deformation rate and Dp the plastic defor-
mation rate.

The deformation gradient is decomposed in the following form
(cf. Naghdi, 1990 and Truesdell and Noll, 2004)

F ¼ VR (2.2)

where F is the deformation gradient, V the left stretch tensor and R
the rotation tensor. In the Cartesian coordinate system, the left
stretch tensor is decomposed in the following form

V ¼ REVlRT
E (2.3)

where Vl is a diagonal matrix whose diagonal components are the
principal values of the left stretch tensor, RE is a normal orthogonal
matrix. Bold letters denote tensors or tensor component matrices
in the Cartesian coordinate system throughout the paper. The stress
can be expressed as
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s ¼ RpslRT
p (2.4)

where s is the Cauchy stress, sl is a diagonal matrix whose diag-
onal components are the principal values of the Cauchy stress and
Rp is a normal orthogonal matrix.

For isotropic-elastic deformation, the Cauchy stress is coaxial
with the left stretch tensor. We have

Rp ¼ RE (2.5)

Substituting (2.3) into (2.2), we obtain

F ¼ REVlRT
L (2.6)

where RT
L ¼ RT

ER. The deformation rate is defined as

D ¼ ð1=2Þ½ _FF�1 þ _FF�1
� �Ti

(2.7)

Substituting (2.6) into (2.7), we obtain

D ¼ REðDd þ DsÞRT
E (2.8)

where

Dd ¼ _VlV�1
l and Ds ¼ ð1=2Þ

�
V�1
l RT

L
_RLVl þ Vl

_R
T
LRLV

�1
l

�
(2.9a,b)

Dd is a diagonal matrix, Ds is a symmetric matrix whose diagonal
components are equal to zero. RT

L
_RL is a skew-symmetric matrix.

When Vl is equal to the unit matrix I,

Ds ¼ O (2.10)

where O denotes the zero matrix. When Vl approaches I, Ds ap-
proaches O if RL is continuous (RT

L
_RL is finite).

3. An analysis of the associated flow rule of plastic
deformation rate

We consider von Mises material exhibiting kinematic hard-
ening. The yield surface in stress space is represented by

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þs : s

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þ

�
sij � a*ij

��
sij � a*ij

�r
¼ sy0 (3.1)

where s ¼ ðs� aÞ, s and a with components sij and a�ij are the
deviatoric Cauchy stress and the deviatoric back stress respectively
and sy0 is the equivalent Cauchy stress at initial yield. In the rect-
angular Cartesian coordinate system with the stress principal axes
as coordinates (the stress state on the yield surface is a diagonal
matrix, i.e., s ¼ sl), the yield surface is rewritten as

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þs : s

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þ�si � aij

��
si � aij

�q
¼ sy0 (3.2)

where (si) is a diagonal matrix. Signs with one index denote diag-
onal matrices throughout the paper. The deviatoric back stress at
initial time may not be equal to zero (the material was subjected to
plastic deformations), and thus the deviatoric back stress need not
be coaxial with the stress and (si�aij) may not be a diagonal matrix.

For the yield surface (3.2), the associated flow rule is

Dp ¼ Dp
ij

� �
¼ _J

vF
vsij

 !��
sij¼0; isjð Þ ¼ _f si � aij

� �
; i; j¼ 1; 2; 3ð Þ

(3.3)

where _4 is a scalar quantity. The associated flow rule (3.3) is also
referred to as the normality flow rule as it implies that the vector of
the plastic deformation rate is perpendicular to the yield surface in
nine-dimensional stress (sij) space. The normality flow rule (3.3) is
generally expressed as

Dp ¼ 1
h

_s : s
s : s

s; (3.4)

where h is a scalar parameter of material.
We analyze the normality flow rule (3.4) in terms of plastic

dissipation. Consider a stress state:

s ¼
0
@ s11 0 0

0 s22 0
0 0 s33

1
A; s ¼

0
@ 0 a12 a13

a21 0 a23
a31 a32 0

1
A; (3.5a,b)

which is on the yield surface (3.2). If the stress rate ( _s) is directed
toward the outside of the yield surface, or the inner product be-
tween the stress rate and the unit normal to the yield surface
( _s : s=

ffiffiffiffiffiffiffiffiffi
s : s

p
) is greater than zero, the normality flow rule (3.4) is

supposed to be valid. From (3.4) and (3.5a,b), we obtain the dissi-
pation of mechanical energy

En ¼ Dp : s ¼ 1
h

_s : s
s : s

�
sij � aij

�
sij ¼

1
h

_s : s
s : s

�
sij � aij

�
sij ¼ 0

(3.6)

It is clear that the normality flow rule (3.4) violates the principle
of plastic dissipation.

We analyze the normality flow rule (3.3) from another
perspective. Consider a deformation from t0, t1 up to t2:
I / F1 / F2. I / F1 is a very small isotropic-elastic deformation
and F1 / F2 is an elasticeplastic deformation. Assume that the
elastic deformation rate can be ignored compared with the plastic
deformation rate in the elasticeplastic region.

The deformation gradient is decomposed in the form (2.6). The
deformation rate is decomposed in the form (2.8). We assume that
the deformation gradient F is continuous (we does not assume that
the deformation rate is continuous). Thus, RL, RE and Vl in (2.6) are
continuous. The deformation gradient at t1 is expressed as

F1 ¼ RE1Vl1R
T
L1 (3.7)

where subscript 1 denotes the time t1. The deformation rate at t1 is
expressed as

D1 ¼ RE1ðDd1 þ Ds1ÞRT
E1 (3.8)

Since I / F1 is a very small deformation, Vl1 approaches I and
Ds1 approaches O (see (2.10)) (Ds1 can be ignored compared with
Dd1). The deformation rate at t1 is equal to

D1 ¼ RE1Dd1R
T
E1 (3.9)

The elastic deformation rate is ignored. As a result, the plastic
deformation rate at t1 is

Dp
1 ¼ D1 ¼ RE1Dd1R

T
E1 (3.10)

Since I/F1 is an isotropic-elastic deformation, the stress at t1
can be expressed as
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