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a b s t r a c t

Soft fibrous solids often consist of a matrix reinforced by fibers that render the material anisotropic.
Recently a fiber dispersion model was proposed on the basis of a weighted strain-energy function using
an angular integration approach for both planar and three-dimensional fiber dispersions (G.A. Holzapfel
and R.W. Ogden: Eur. J. Mech. A/Solids, 49 (2015) 561e569). This model allows the exclusion of fibers
under compression. In the present study computational aspects of the model are documented. In
particular, we provide expressions for the elasticity tensor and the integration boundary that admits only
fibers which are extended. In addition, we give a brief description of the finite element implementation
for both 2D and 3D models which make use of the von Mises distribution to describe the dispersion of
the fibers. The performance and the finite element implementations of the 2D and 3D fiber dispersion
models are illustrated by means of uniaxial extension in the mean fiber direction and more general
directions, and simple shear with different mean fiber directions. The finite element results are in perfect
agreement with the solutions computed from analytical formulas.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In many soft fibrous solids, including biological tissues, there
exists a matrix reinforced by embedded fibers which, in general,
induce anisotropy in the material. For some materials the matrix
can be treated as homogeneous and isotropic. The fibers may be
distributed within the matrix in various ways. Specifically, in hu-
man arterial walls the collagen fibers are not perfectly aligned but
are dispersed around a mean direction. Such a fiber dispersion has
been observed in, for example, human arterial walls (Canham et al.,
1989; Finlay et al., 1995, 1998; Schriefl et al., 2012; Schriefl et al.,
2013), the myocardium (Karlon et al., 1998; Covell, 2008), corneas
(Boote et al., 2004, 2005) and articular cartilage (Lilledahl et al.,
2011). In particular, recent extensive experimental results
(Schriefl et al., 2012) have shown that the collagen fiber dispersion
in each of the layers of (healthy) human thoracic and abdominal
aortas and iliac arteries is non-symmetric, in contrast to the rota-
tionally symmetric fiber dispersion assumed in previous studies;

see, for example, Gasser et al. (2006). In order to improve under-
standing of the mechanical properties of such tissues, constitutive
modeling is essential.

Motivated by the specific structural arrangements of collagen
fibers, various constitutive relations have been developed. Fiber
dispersion has been represented in such constitutive relations
either by direct incorporation in a strain-energy function via a
probability density function (PDF) or by a generalized structure
tensor. Following Cortes et al. (2010) these two approaches are
referred to as ‘angular integration’ (AI) and ‘generalized structure
tensor’ (GST), respectively. For a short survey of the main existing
constitutivemodels that account for dispersion of collagen fibers by
using either the AI approach (due to Lanir, 1993) or the GST
approach, see the review in Holzapfel et al. (2015). In particular, our
group has developed a constitutive relation for the modeling of
arterial layers with a rotationally symmetric fiber dispersion
(Gasser et al., 2006). Recently, this model has been extended to a
more general case (Holzapfel et al., 2015) for which a non-
symmetric fiber dispersion can also be captured.

Generally, the role of the fibers is primarily mechanical,
providing the material with increased stiffness and strength. The
fibers are elongatedwhen loaded in tension, and it is often assumed
that they do not contribute to the overall mechanical response of
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the material in compression. The computational implementation of
this assumption requires a tensionecompression ‘switch’ which
eliminates the mechanical contribution of each fiber that is in
compression. However, as pointed out in Holzapfel and Ogden
(2015), such a condition has not been interpreted correctly in the
literature and in finite element programs; see, for example, Abaqus
6.13 Analysis User's Guide (2013).

A Heaviside step function is sometimes introduced to eliminate
the mechanical influence of the compressed fibers; see Ateshian et
al. (2007, 2009); Federico and Gasser (2010) and Melnik et al.
(2015). Theoretically, this method could successfully exclude the
contribution of the compressed fibers from the total strain-energy
function. However, as indicated in Federico and Gasser (2010), the
presence of the Heaviside function renders the stress and elasticity
tensors discontinuous. In the recent paper by Holzapfel and Ogden
(2015) we have proposed a modified fiber dispersion model which
incorporates a weighted strain-energy function that allows the
exclusion of fibers under compression without the need for a
Heaviside function. This model, which is based on the AI approach,
was developed for planar and three-dimensional fiber dispersions
and enables the stress and the elasticity tensors to be calculated in a
straightforward way. However, the computational aspects of this
modified model, specifically the form of the elasticity tensor and
the integration boundary that admits only fibers which are
extended, are not yet documented. Therefore, the aim of this study
is to further develop this model for the purpose of computational
implementation.

The present study is structured as follows. In Section 2 we
present the continuum mechanical framework for the modified
fiber dispersion model in a decoupled form suitable for finite
element implementation, including the Cauchy stress and the
elasticity tensors for both planar and three-dimensional fiber dis-
tributions. The boundary of the integration domain is also dis-
cussed for different deformation states. In Section 3 we introduce
an adaptive finite element integration scheme for the numerical
integration required for the stress and the elasticity tensors in the
appropriate domain. In Section 4 the theory introduced in Section 2
is applied to several examples using the finite element scheme from
Section 3. In particular, six representative numerical simulations
are presented with the aim of demonstrating the efficacy of the
proposed computational method. Finally, Section 5 summarizes the
developed method and discusses possible future developments of
the present study.

2. Continuum mechanical framework

In this section we outline the basic notation and fundamental
results of nonlinear continuum mechanics in order to establish the
mathematical description of fiber dispersion models, including the
corresponding Cauchy stress and elasticity tensors. In particular,
the integration boundary in the deformation space within which
fibers are extended is also introduced.

2.1. Kinematics

LetB 0 be a (stress-free) reference configuration of a continuum
body andB its deformed configuration. The deformationmap cðXÞ
transforms a material point X2B 0 into a spatial point x2B . With
this deformation map we define the deformation gradient
FðXÞ ¼ vcðXÞ=vX and its determinant J ¼ det F(X), where J is the
local volume ratio; we require J > 0.

Following the multiplicative decomposition of the deformation
gradient in Flory (1961) and Ogden (1978) we decouple F into a
spherical (dilatational) part J1/3I and a unimodular (distortional)
part F ¼ J�1=3F, with det F ≡ 1. We define the right CauchyeGreen

tensor C ¼ FTF and its modified counterpart C ¼ F
T
F, respectively,

with the related invariants I1 ¼ tr C and I1 ¼ tr C.

2.2. Planar fiber dispersion model

The modified fiber dispersion model (Holzapfel and Ogden,
2015) that accounts only for fibers under extension requires nu-
merical integration in the sub-domain of a unit sphere for which
the fiber stretch is greater than one. For some soft biological tissues
such as arterial walls the fiber dispersion in the thickness direction
is smaller than in the in-plane direction (Schriefl et al., 2012), and
for our present purposes we neglect the out-of-plane dispersion.
We treat the material as incompressible, elastic and fiber-
reinforced with a locally planar fiber dispersion. Without loss of
generality we choose the thickness direction in such a material as
the E3 Cartesian axis. Hence, an arbitrary in-plane fiber direction
within a dispersion about a mean fiber direction M may be
described by a unit vector N in the reference configuration as

NðQÞ ¼ cosQE1 þ sinQE2; (1)

where E1 and E2 are the in-plane unit rectangular Cartesian basis
vectors, and Q is the angle between the fiber direction N and E1, as
shown in Fig. 1. Also shown in Fig. 1 is the mean fiber direction M
and the angle QM that it makes with the E1 direction. Analogously
to (1) we may write

M ¼ cosQME1 þ sinQME2 (2)

in the reference configuration, where QM is a constant.
Since we are considering elastic materials, we assume that there

exists a strain-energy function J(C, {N}), where {N} implies the
dependence on the distribution of N, that depends on the macro-
scopic deformation through C, the underlying material structure
through each direction N, and a PDF r(Q) that describes the fiber
alignment and dispersion. For computational purposes, we assume
that the strain-energy function can be decoupled as (Holzapfel,
2000)

JðC;fNgÞ ¼ JvolðJÞ þJiso

�
C;fNg

�
; (3)

where the function Jvol is a purely volumetric contribution while
Jiso represents the energy contribution of an isochoric (volume
preserving) deformation through C. Suppose now the total iso-
choric strain-energy function Jiso is the superposition of the en-
ergies contributed by the (non-collagenous) groundmatrix and the
collagen fibers, i.e. (Holzapfel et al., 2000)

Jiso ¼ Jg

�
C
�
þJf

�
C;fNg

�
: (4)

Following Holzapfel and Ogden (2015) and Holzapfel et al.
(2000) we model the ground matrix as a neo-Hookean material
JgðI1Þ ¼ mðI1 � 3Þ=2, where the parameter m is the shear modulus
in the reference configuration. The isochoric strain energy
contributed by the fibers per unit reference volume associated with
the direction N is assumed to be a function of the fiber stretch only.
Thus, we adopt a modified form of the standard fiber reinforcing
model (Qiu and Pence, 1997) for the contribution of a fiber along N
in which I4 is used instead of I4. This is given by

Jn
�
I4ðNÞ

� ¼ n

2
�
I4ðNÞ � 1

�2
; (5)

where n is a non-negative material constant with the dimension of
stress and the modified fourth invariant is
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