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a b s t r a c t

Thin membranes are prone to wrinkling under various loading, geometric and boundary conditions,
affecting their functionality. We consider a hyperelastic cylindrical membrane with non-uniform thick-
ness pressurized by internal gas or fluid. When pre-stretched and inflated, the wrinkles are generated in
a certain portion of the membrane depending on the loading medium and boundary conditions. The
wrinkling is determined through a criterion based on kinematic conditions obtained from non-negativity
of Cauchy principal stresses. The equilibrium solution of a wrinkled membrane is obtained by a specified
combination of standard and relaxed strain energy function. The governing equations are discretized by a
finite difference approach and a NewtoneRaphson method is used to obtain the solution. An interesting
relationship between stretch induced softening/stiffening with the wrinkling phenomenon has been
discovered. The effects of pre-stretch, inflating medium, thickness variations and boundary conditions on
the wrinkling patterns are clearly delineated.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Thin elastic membranes show geometric, material and force
non-linearities, which make them vulnerable to instabilities when
subjected to pressure, force or traction. The stability investigation
of inflated membranes is concentrated on three main topics: limit
point instability, bifurcation instability and wrinkling. Limit points
and bifurcation points are the two major types of critical points in
the equilibrium paths. Detailed investigations of limit and bifur-
cation point instabilities, with some experimental results, are
available in the literature (Alexander, 1971; Haughton and Ogden,
1979b, a; Pamplona et al., 2001; Eriksson and Nordmark, 2012;
Patil and DasGupta, 2015; Patil et al., 2015) and references therein.

Wrinkling, resulting from compressive stresses, often occurs for
inflated membrane structures, and can be seen as related to geo-
metric effects. The wrinkles develop in the membrane in the di-
rection orthogonal to the negative principal stress. This breaks the
convexity condition of the strain energy density function of the
membrane (Pipkin, 1986; Steigmann, 1990), so standard strain en-
ergy function can not be used in the wrinkled regions. Several
theories regarding the wrinkling phenomenon are available in the
literature (Wagner, 1929; Reissner, 1938; Wu and Canfield, 1981;

Pipkin, 1986, 1993, 1994; Steigmann, 1990; Mansfield, 1970), and
detailed investigations on wrinkling phenomena can be found in Li
and Steigmann (1994a, b); Roxburgh (1994); Haseganu and
Steigmann (1994); Massabo and Gambarotta (2007); Bonin and
Seffen (2014).

In a work on wrinkling, Pipkin (1986) proposes the use of a
relaxed strain energy function to study wrinkling of an isotropic
membrane, with wrinkling idealized as continuously distributed
over membrane surface to maintain the strain compatibility. This
work shows that when a relaxed energy function is replacing the
standard strain energy functions, tension field theory appears as an
integral part of the membrane theory, and automatically satisfies
several conditions including convexity and Legendre-Hadamard
conditions. In subsequent papers, Pipkin (1993, 1994) has proved
minimum energy and minimum complementary energy theorems
with a relaxed strain energy density function for small and large
deformation of membranes.

Thewrinkling of thin elastic sheets or films are studied by either
assuming thin sheets as membranes (zero bending stiffness) or as
thin shells (non-zero bending stiffness). When sheets are modeled
as membranes, the tension field theory is used to ascertain stress
distribution and wrinkling regions (Mansfield, 1970; Pipkin, 1986;
Steigmann, 1990). But, due to absence of bending stiffness, the
fine structure of wrinkles is unknown in the membranes. When
sheets are modeled as thin shells, the bending stiffness defines the
fine structure of wrinkles (Cerda et al., 2002; Cerda and
Mahadevan, 2003; Healey et al., 2013; Nayyar et al., 2011, 2014;
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Taylor et al., 2014), but it is well known that shell modeling of thin
sheets is numerically demanding and the obtained results highly
dependent on a used discretization. Cerda et al. (2002) presented
experimental data and scaling analysis, which shows that the
wrinkling wavelength decreases and wrinkling amplitude in-
creases monotonically with increase in nominal strain for stretched
elastic sheets with small finite strains. Cerda and Mahadevan
(2003) extended the scaling analysis for generalized wrinkling
phenomenon. However, Nayyar et al. (2011, 2014) show that for
hyperelastic stretched sheets with large finite strains, wrinkling
wavelength decreases with increase in nominal strain, but wrin-
kling amplitude increases first and then decreases with increase in
nominal strain and eventually flattens out completely. Recently,
Taylor et al. (2014) applied Koiter's nonlinear plate theory to
stretched thin elastic sheets to obtain the wrinkling patterns.

The wrinkling of the membranes can be studied by two ap-
proaches. First, out of plane geometric non-linearities are treated as
constitutive non-linearities through modification of the strain en-
ergy function, which enables to model wrinkles as continuously
distributed over the membrane surface (Pipkin, 1986; Steigmann,
1990; Wagner, 1929; Reissner, 1938). A second approach is based
on a modification of the deformation tensor without modifying the
constitutive relationship (Wu and Canfield, 1981; Roddeman et al.,
1987a, b; Lu et al., 2001). In this paper, we are following the first
approach.

Steigmann (1990) proposes a general finite deformation theory
of a tension field in isotropic elastic membranes. The state of
membrane, whether it is tense, wrinkled or slack, is described by
kinematic conditions in terms of stretches, elaborated by Pipkin
(1986); Li and Steigmann (1994b, a); Roxburgh (1994). As
mentioned byMassabo and Gambarotta (2007), the membrane or a
part of the membrane can be in three states of stress: tense state,
where the material is in a bi-axial state of stress; wrinkled state,
where only one tensile principal stress is present in the direction of
wrinkles; slack state, where both in-plane principal stresses are
absent and the membrane is inactive. The relaxed strain energy
functions for an isotropic membrane have been derived or used by
Pipkin (1986) for a neo-Hookean model, by Roxburgh (1994) for a
Mooney-Rivlin model, by Li and Steigmann (1994b, a) for an Ogden
model, by Steigmann (2005) for a Varga model and byMassabo and
Gambarotta (2007) for a Fung type model.

Even if much work has been done on wrinkling of isotropic
membranes, wrinkling of anisotropic membranes remains to be
explored. It was Roddeman et al. (1987a, b), who derived a general
theory for wrinkled anisotropic membranes by modifying the
deformation tensor. Pipkin (1994) has presented anisotropic
relaxed energy functions, where the concept is based on the
minimization of the energy density over all possible additions of a
wrinkling strain, which is eventually found explicitly. Later, Epstein
(1999) and Epstein and Forcinito (2001), show existence and
uniqueness of a relaxed strain energy function for anisotropic
membranes. Recently Atai and Steigmann (2014) has studied
wrinkling of anisotropic sheets by dynamic relaxation method in
context of modeling bio-tissues and structural membranes. The
anisotropy and non-homogeneity can be used to remove a ten-
dency of impending wrinkling (Tamadapu and DasGupta, 2013,
2014).

As the applications of membranes vary from space technolo-
gies through diverse engineering applications to biological sci-
ences, the wrinkling instability is an unwelcome phenomenon
which can be detrimental to the overall performance of mem-
branes (Haughton and Mckay, 1997; Massabo and Gambarotta,
2007; Lu et al., 2001; Bonin and Seffen, 2014). The computa-
tional prediction of wrinkling does not always match accurately
with experiments, due to many reasons like the idealization of

the membrane with a specific material model, the idealization of
loading and boundary conditions, a non-uniform thickness and
others. Khayat et al. (1992) studied the effect of non-uniform
undeformed thickness variations on the stability and deforma-
tion of cylindrical membranes. Recently, Chen (2007) presented a
study on a pressurized circular membrane with linearly varying
thickness, and shows that the deformation varies considerably
with the thickness variation. The author notes that the micro-
machining process like spin coating often leads to a thicker
edge and wet etching in either the thinner or the thicker edge for
circular membranes. In general, for polymeric membranes non-
uniform thickness of membrane occurs due to the tolerances in
manufacturing process. In this paper we have studied a simple
case by considering a linearly varying undeformed thickness
(Chen, 2007).

To avoid further ambiguity, we define directions of wrinkles and
wrinkling: the direction of wrinkles are orthogonal to the negative
principal Cauchy stress and the direction of wrinkling is in the di-
rection of negative principal Cauchy stress.

In the present work, finite inflation of a non-uniformly thin
cylindrical membrane after pre-stretching is studied when
subjected to fluid and gas pressures. The homogeneous,
isotropic, hyperelastic membrane is modeled as a Mooney-
Rivlin solid with the standard strain energy function for tense
regions and a relaxed strain energy function for the wrinkled
regions. Wrinkling patterns in the membrane are obtained for
gas and fluid pressure loadings. Only quasi-static equilibrium
solutions are considered, with dynamic and thermal effects
neglected. The equilibrium equations are obtained by a varia-
tional formulation and discretized by finite differences to obtain
a set of non-linear algebraic equations. The navigation between
the two forms of strain energy is done with the help of a
Heaviside function. The resulting non-linear algebraic equations
are solved by a NewtoneRaphson method. An incremental
arclength-cubic extrapolation method is used to find general-
ized equilibrium paths.

2. Problem formulation

2.1. Kinematics of deformation

Consider an initially stress-free, homogeneous and isotropic
cylindrical membrane defined by a radius Ao, and length Lo, Fig. 1.
The membrane has linearly varying undeformed thickness H. The
membrane is then subjected to a uniform axial edge load pre-
stretching it to a new length Lf, where d ¼ Lf/Lo is an axial pre-
stretch parameter. After reaching the targeted length Lf, the ends
of the cylindrical membrane are fixed with rigid disks of radius Af

(Af obtained from boundary conditions after pre-stretching). In
general, subscript o denotes parameters of the unstretched mem-
brane and subscript f those of the pre-stretched membrane. The
initial radius Ao and initial length Lo are identical for all studied
cylindrical membranes.

The undeformed configuration of the membrane is represented
by the coordinates R, Q and Z in the radial, circumferential and
axial directions, respectively. The membrane is then inflated with
a fluid of density r up to fluid level zw, Fig. 1(c), or with a uniform
gas pressure, Fig. 1(d). Assuming an axisymmetric configuration,
the radial, circumferential and axial co-ordinates of a material
point on the membrane after inflation may be represented by,
respectively, r(Z), Q and z(Z). The deformed radial and axial co-
ordinates can be represented as r(Z) ¼ Ao þ u(Z) and
z(Z) ¼ Z þ w(Z), where u(Z) and w(Z) are displacement field var-
iables. The three-dimensional metric tensor for the undeformed
cylindrical membrane is
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