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a b s t r a c t

Coupled higher-order layerwise piezoelectric laminate mechanics are presented, applicable to shallow
cylindrical composite and sandwich shells subjected to static mechanical loads and/or electric voltages.
The current formulation enables efficient prediction of (i) global electromechanical response, (ii) local
through-thickness distribution of electromechanical variables and (iii) interlaminar shear stress at the
interface between adjacent material layers. Using the developed mechanics, the effects of curvature,
thickness and ply angle on the global and local through-thickness response of sandwich composite shells
are studied.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Sandwich composite shell structures with piezoelectric trans-
ducers combine excellent mechanical properties, such as high
flexural stiffness to mass ratio, with tailoring options provided by
composite face layers by means of fiber orientation and lamination,
and monitoring/real-time control capabilities of the piezoelectric
materials. In this kind of structures, the high thickness and strong
inhomogeneity through the thickness may lead to delamination
between piezoelectric and composite material layer. Thus, predic-
tion of interfacial stress is crucial in the design stage, whereas its
determination via in-service monitoring is essential in order to
estimate if damage is about to occur. In the last twenty five years
layerwise laminate theories have been proved to be an accurate tool
for the estimation of through-thickness stress distributions in
composite and sandwich composite shell structures (Reddy, 2004).

Early works on laminate modelling of composite shells with
piezoelectric transducers have been extensively reviewed by
Saravanos and Heyliger (1999) and Benjeddou (2000), while
recent literature reviews have been conducted by Qatu et al.
(2010) and Carrera et al. (2011). Coupled piezoelectric shell the-
ories based on single-layer through-thickness kinematics have
been developed, among others, by Tzou (1993), Lammering

(1991) and Saravanos (1997), and more recently by Zemcik
et al. (2007) and Legner et al. (2013). However, single-layer the-
ories fail to predict the through-thickness distribution of inter-
laminar shear stress in composite and sandwich shells of
arbitrary lamination and thickness. In order to improve such
predictions, shell finite elements resting on coupled linear
layerwise piezoelectric laminate theories have been reported by
Tzou and Ye (1996) and Heyliger et al. (1996). In these theories
the displacements and electric potential are assumed to vary
linearly through the thickness of each discrete layer of the
laminate. Thus, in order to capture piecewise higher-order pro-
files occurring through the thickness of the shell, a large number
of discrete layers is required, which increases computational cost.
Moreover, the value of transverse shear stress at the interface
between composite-piezoelectric material can be only approxi-
mated, since its assumed variation in each layer is constant. An
alternative to the linear layerwise shell theories are 3-D or 2-D
piezo-elasticity solutions (Kapuria et al., 1997, Alibeigloo and
Chen, 2010, Wu and Tsai, 2012, Kulikov and Plotnikova, 2014,
Zhang et al., 2014), compared to which, finite element solutions
appear to be more flexible in terms of considering design changes
in geometry, boundary conditions, inclusion of patch transducers
etc. Another alternative is to super-impose higher-order varia-
tions of displacements, globally smeared through the laminate
thickness, on the linear layerwise displacement field, as reported
by Oh and Cho (2007) and Nath and Kapuria (2009). Balamurugan
and Narayanan (2009) combined classical laminate plate theory
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kinematics with layerwise trigonometric functions to approxi-
mate the in-plane displacements through the thickness of com-
posite shells, while assuming quadratic variation of electric
potential through the thickness of the piezoelectric layers.
Recently, Yasin and Kapuria (2014) reported a layerwise C0

continuous shell finite element for shallow sandwich shells with
piezoelectric layers by superimposing a global through-thickness
higher-order displacement field on linear layerwise distributions
and a quadratic approximation of the electric potential through
the thickness of the piezoelectric layers. Up to date, most existing
laminate theories applicable to composite and sandwich shallow
shells with piezoelectric transducers are either based on linear
layerwise kinematics or on combination of these with globally
smeared higher-order distributions through the thickness of the
shell laminate.

In the present paper, a novel higher-order layerwise theo-
retical framework and a corresponding finite element are pre-
sented, capable of predicting the static electromechanical
response of composite and sandwich composite cylindrical shells
with piezoelectric transducers. Simple kinematic assumptions
enable prediction of through-thickness piecewise distributions
up to 3rd order using a low number of discrete layers, and pre-
diction of stress at the interface between adjacent discrete layers.

Validation studies with exact and Ritz type solutions based on
single-layer and smeared higher-order layerwise formulations
reveal the enhanced capabilities of the present shell laminate
theory. Using the developed formulation, the effect of curvature,
thickness and ply-angle on the electromechanical response of
shallow cylindrical sandwich shell structures are quantified.

2. Piezoelectric cylindrical shell mechanics

The next paragraphs describe the theoretical formulation,
starting from the governing material equations at the piezoelectric
ply and arriving to the solution of the coupled electromechanical
structural system of the sandwich composite cylindrical shell in
sensory and/or active configuration.

2.1. Governing material equations

In general, the laminate layers including, piezoelectric, com-
posite and foam plies are assumed to exhibit linear piezoelectric
behaviour. Piezoelectric transducers polarized through-thickness
are considered. The ply constitutive equations in the curvilinear
coordinate system O1xhz (Fig. 1(a) and (b)) have the form:

si ¼ CEijSj � ðe3iÞTE3
D3 ¼ e3jSj þ ε

S
33E3

(1)

where i, j ¼ 1, 2, 4, 5, 6, since transverse normal strain and stress (i,
j ¼ 3) are not considered, as indicated by the kinematic assump-
tions (3); si and Sj are the mechanical stress and engineering strain,

respectively, in vectorial notation; E3 is the electric field vector; D3
is the electric displacement vector; Cij is the elastic stiffness tensor;
e3j is the piezoelectric tensor arising from the piezoelectric charge
tensor and the stiffness tensor; and ε33 is the electric permittivity
tensor of the material. Superscripts E and S indicate a constant
electric field, and strain conditions, respectively. The electric field
vector E3 is given by:

E3 ¼ �v4=vz (2)

where4 indicates electric potential along the thickness direction of
the piezoelectric transducer.

2.2. Through-thickness kinematic assumptions

A section of a typical cylindrical laminate is shown in Fig. 1(a). It
is assumed to be subdivided into n discrete layers as shown sche-
matically in Fig. 1(c). Each discrete-layer may contain a single ply, a
sub-laminate, or a sub-ply. Parabolic and cubic variations of in-
plane displacement and electric potential through the thickness
of each discrete layer are superimposed on linear respective ap-
proximations (Fig. 1(d)). In this context, the variation of displace-
ment and electric potential in the k-th discrete layer take the form:
where superscripts k ¼ 1, … , n denote discrete layer and zk is the

local thickness coordinate of layer k defined such as zk ¼ 0 at the
middle of the discrete layer, zk ¼ 1 and zk ¼ �1 at the top and the
bottom, respectively. Jk

1;J
k
2 are linear and Jk

3;J
k
4 are quadratic,

cubic interpolation functions, respectively, through the thickness of
the layer (Appendix A).

The first two terms on the right hand side of the approxima-
tions of the in-plane displacements and electric potential in
equation (3) describe the linear field, and Uk, Vk, Uk þ 1, Vk þ 1 and
Fk;Fkþ1 are the respective values at bottom and top of the
discrete layer, effectively describing extension and rotation, and
electric potential at the terminals, respectively, of the layer. The
last two terms describe quadratic and cubic variations of dis-
placements and electric potential through the thickness of the
discrete layer and vanish at its top and bottom interfaces, since
the polynomial functions Jk

3 and Jk
4 ensure displacement/po-

tential continuity across the discrete layer boundaries. The terms
akx ;a

k
h and lkx ; l

k
h are higher-order elastic and ak4; l

k
4 electric de-

grees of freedom of each discrete layer introduced by the
quadratic and cubic polynomials, respectively. The present model
distinguishes in this point from higher-order approximations
globally smeared through the laminate thickness, since the
higher-order terms are additional degrees of freedom of the
discrete layer.

2.3. Strainedisplacement relations

In the case of a shallow cylindrical shell (h/R << 1 (Soedel,
2004), where R is the radius of curvature of the shell and h is the

ukðx;h; zkÞ ¼ Ukðx;hÞJk
1ðzkÞ þ Ukþ1ðx;hÞJk

2ðzkÞ þ akx ðx;hÞJk
3ðzkÞ þ lkx ðx;hÞJk

4ðzkÞ
vkðx;h; zkÞ ¼ Vkðx;hÞJk

1ðzkÞ þ Vkþ1ðx;hÞJk
2ðzkÞ þ akhðx;hÞJk

3ðzkÞ þ lkhðx;hÞJk
4ðzkÞ

wkðx;h; zkÞ ¼ w0ðx;hÞ
4ðx;h; zkÞ ¼ Fkðx;hÞJk

1ðzkÞ þ Fkþ1ðx;hÞJk
2ðzkÞ þ ak4ðx;hÞJk

3ðzkÞ þ lk4ðx;hÞJk
4ðzkÞ

(3)
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