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a b s t r a c t

In this paper we study the deformation and stability of a pinnedepinned buckled beam under the action
of a concentrated force at the midpoint. Focus is placed on the snap-through phenomenon, which may
take place in a plane or three-dimensional space. We first find the equilibrium configurations by using
shooting method. Elastica model is adopted to take into account exact geometry in large deformation. As
expected, multiple solutions may exist for a specified set of loading parameters. Vibration method is then
employed to determine the stability of the equilibrium solutions. Through these analyses the defor-
mation sequence as the midpoint force increases quasi-statically can be predicted. It is found that the
deformation sequence of the elastica is determined by two parameters; (1) the distance between the two
ends of the buckled beam, and (2) the bending stiffness ratio of the cross section. Ten different defor-
mation patterns can be identified according to four characteristics; the deformations before, after, and
during the jump, and the type of critical point at the jump. A metallic wire with circular cross section is
used to verify the predicted deformation sequence. It is concluded that for the specific specimen in the
demonstration if one wishes to design an elastica capable of only plane deformation in all range of end
distance, then the bending stiffness ratio has to be greater than 28.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the design of miniature mechanisms, such as in MEMS, it is
impractical to use conventional rigid-body joint pairs due to space
constraint. More often, the motion transmission is accomplished by
the deformation of a single flexible beam. In particular, the snap-
through phenomenon of a curved beam has been used for micro-
switches (Maurini et al., 2007; Zang et al., 2007; Krylov et al.,
2008; Medina et al., 2012; Ouakad and Younis, 2014). Two kinds
of curved beams under midpoint forces can be found in the liter-
ature. In the first type, the curved beam is stress free when it is in
curved configuration, see Fung and Kaplan (1952), Schreyer (1972),
Plaut (1978), Chen et al. (2009), Virgin et al. (2014). In the second
type the beam, which is stress free when it is straight, is buckled
into a curved shape by edge thrust. The buckled beam is then
loaded by a midpoint force, see Seide (1984), Pippard (1990),
Patricio et al. (1998), Vangbo (1998), Kublanov and Bottega
(1995), Pinto and Goncalves (2000), Cazottes et al. (2009), Chen
and Hung (2011, 2012), Chen and Tsao (2013).

The snap-through phenomena observed in these studies are
limited in plane deformation. Pippard (1990) noted in his experi-
ment that a sway mode of instability normal to the plane of the
strip tends to occur. Intuitively, if the ratio between the width and
the thickness of the strip is sufficiently large, the strip should
behave like a planar elastica. This raises the question what the
minimum ratio is in order for the strip to deform only in a plane.
Furthermore, what will happen if three-dimensional deformation
does occur? In this paper we pursue this interesting phenomenon
by considering an elastic rod capable of out-of-plane deformation.
Elastica model is adopted in the analysis.

The elastic rod considered in this paper is stress free when it is
straight. The two ends of the rod are pinned in space after it is
buckled into a curved shape. A force is applied at the midpoint in
the plane of the rod. The two principal moments of inertia of the
cross section may be different. If the bending stiffness in one of the
principal directions is much larger than the other, it is expected that
the deformation will be restricted in a plane, as described in the
works cited previously. If the two bending stiffness are comparable,
on the other hand, spatial deformationmay occur. It is the objective
of this paper to identify all these deformation patterns.

In Section 2 we establish the equations of motion of the loaded
rod. In Section 3 we conduct a static analysis to find the equilibrium
configurations. In Section 4 we study the vibration characteristics

* Corresponding author.
E-mail address: jschen@ntu.edu.tw (J.-S. Chen).

Contents lists available at ScienceDirect

European Journal of Mechanics A/Solids

journal homepage: www.elsevier .com/locate/ejmsol

http://dx.doi.org/10.1016/j.euromechsol.2015.06.006
0997-7538/© 2015 Elsevier Masson SAS. All rights reserved.

European Journal of Mechanics A/Solids 54 (2015) 84e93

Delta:1_given name
Delta:1_surname
mailto:jschen@ntu.edu.tw
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechsol.2015.06.006&domain=pdf
www.sciencedirect.com/science/journal/09977538
http://www.elsevier.com/locate/ejmsol
http://dx.doi.org/10.1016/j.euromechsol.2015.06.006
http://dx.doi.org/10.1016/j.euromechsol.2015.06.006
http://dx.doi.org/10.1016/j.euromechsol.2015.06.006


of the loaded elastica. The stability of the loaded elastica can then
be determined from the calculated natural frequencies. In Section 5
we present in detail a numerical example showing the load-
deflection diagram and the frequency spectrum. A pinned
metallic wire with circular cross section is used to verify the pre-
dicted deformation sequence as the midpoint load increases quasi-
statically. In Section 6 we show a phase diagram using the distance
between the two ends and the stiffness ratio between the two
principal moments as two parameters. In the diagram, ten different
deformation behaviors are identified. In Section 7 several conclu-
sions are summarized.

2. Equations of motion

We consider a uniform, inextensible, and unshearable elastic
rod with length L0, cross section area A, Young's modulus E, shear
modulus G, and mass density per unit volume m. The area moment
of inertia in the two principal directions of the cross section are I1
and I2, where I1 � I2. The rod is initially straight and stress free.

The rod is first buckled in the plane containing the principal
direction with I2 by pushing the two ends closer to a distance L*.
The two ends are then fixed in space with pin joints, as shown in
Fig. 1(a). A space-fixed x*y*z*-coordinate system with origin
attached to the left end O is chosen to describe the geometry of the
rod. The x*-axis is pointing to the fixed end on the right. The inertial
orthonormal frame {ex,ey,ez} is associated with the x*y*z*-coordi-
nate system. The location of a material point on the neutral axis of
the deformed rod is denoted by arc length s* measured from end O.
We consider the case when the buckled beam is loaded by point
force Q* at the midpoint s* ¼ L0/2 in the �y* direction.

A body-fixed right-handed orthonormal frame {d1,d2,d3} is
chosen in such a manner that vector d3 is in the direction of the
local tangent of the deformed neutral axis. Vectors d1 and d2 are in
the normal cross section of the rod and rotate along with the cross
section. Fig. 1(b) shows the case when the cross section is of elliptic

shape with semi-major axis b and semi-minor axis a. When the rod
is in the unstressed straight state, the frame {d1,d2,d3} coincides
with the frame {ex,ey,ez} in such a manner that d3 ≡ ex, d1 ≡ ey,
d2 ≡ ez. The vectors di(s*,t*) (i ¼ 1, 2, 3), where t* is time, can be
expanded as

di ¼ dixex þ diyey þ dizez ði ¼ 1; 2; 3Þ (1)

It is assumed that the cross section of the rod remains plane and
normal to the neutral axis after deformation. The rotation of the
cross section can be defined by the vector d1. The deformed neutral
axis is a space curve defined by position vector R*(s*,t*), which can
be related to local tangent d3 as

R*0 ¼ d3 (2)

The evolution of the frame {d1,d2,d3} along the deformed rod is
governed by the vector equation

d*0
i ¼ U* � di ði ¼ 1; 2; 3Þ (3)

()0 in Eqs. (2)e(3) represents the derivative with respect to s*.U*

is the generalized strain vector (van der Heijden et al., 2003),

U* ¼ k*1d1 þ k*2d2 þ t*d3 (4)

k*1 and k*2 are the curvatures of projections of the neutral axis on
the d2 � d3 and d1 � d3 planes, respectively. t* is composed of the
geometric torsion of the neutral axis and the physical twist of the
rod. In the case when body fixed triad {d1,d2,d3} coincides with the
Frenet trihedron of the neutral axis, then k*1 is zero and t* contains
only the geometric torsion.

The internal force F*(s*,t*) and internal moment M*(s*,t*) can be
written as

F* ¼ F*1d1 þ F*2d2 þ F*3d3 ¼ F*xex þ F*yey þ F*z ez (5)

M* ¼ M*
1d1 þM*

2d2 þM*
3d3 ¼ M*

xex þM*
yey þM*

zez (6)

F*1 and F*2 are shear forces and F*3 is the axial force.M
*
1 andM*

2 are
bending moments in the directions of d1 and d2, respectively.M*

3 is
the twisting moment along the direction of d3. The constitutive
equations of the rod can be written as

M*
1 ¼ EI1k

*
1; M*

2 ¼ EI2k
*
2; M*

3 ¼ GDt* (7)

D in the third expression in Eq. (7) depends on the shape of the
cross section. If the cross section is elliptic with semi-major axis a
and semi-minor axis b, then D ¼ pa3b3

a2þb2. If the cross section is rect-
angular with sides a and b, then D¼ ka3b, where k can be calculated
from (Reismann and Pawlik, 1980)

k ¼ 1
3
� 192

3p5
a
b

X∞
n¼0

1

ð2nþ 1Þ5
tanh

ð2nþ 1Þpb
2a

(8)

The twist t* is zero in planar deformation, but may be nonzero in
spatial deformation. By extending the formulations in (Coleman
et al., 1993) and (Goriely and Tabor, 1997) from a rod with circu-
lar cross section to noncircular one, we canwrite the dimensionless
governing equations of the spatial elastica under a midpoint force
as

R0ðs; tÞ ¼ d3ðs; tÞ (9)

F
0 ðs; tÞ � Qdðs� 1=2Þey ¼ €Rðs; tÞ (10)

Fig. 1. (a) An elastica subject to a midpoint force. (b) Directors {d1,d2,d3}.
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