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Longitudinal vibration of viscoelastic multi-nanorod system (VMNS) is studied. Based on the D' Alem-
bert's principles, nonlocal and viscoelastic constitutive relations, the system of m partial differential
equations are derived which described the motion of the presented nano-system. Clamped—Clamped
and Clamped—Free boundary conditions and two different chain systems, namely “Clamped-Chain” and
“Free-Chain” are illustrated. The method of separations of variables and trigonometric method are uti-
lized for solutions. The analytical expressions for critical viscoelastic parameters and asymptotic fre-
quencies are presented. The predicted results are validated with results obtained by direct numerical
simulations and results from literature. The effects of nonlocal parameter, number of nanorods, visco-

elastic material constant and parameter of viscoelastic layer on the complex eigenvalue are discussed in

details.
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1. Introduction

Recently, growing interest in the dynamic response of nano-
structures elements like a nanorods, nanobeams or nanoplates,
plays an important role in the development of nanodevices.
Therefore, the issue of vibration behavior of nanostructures ele-
ments has become very important from the practical point of view
and it has wide application in nanotechnology. The nanodevices
include biosensors (Ziegler, 2004; Sotiropoulou and Chaniotakis,
2003; Wang, 2005; Wang et al., 2003; Shen et al.,, 2012; Ali et al.,
2009; Chowdhury et al,, 2011), mass sensors (Lee et al., 2010;
Mehdipour et al, 2011; Murmu and Adhikari, 2011), nano-
resonators (He et al., 2005; Liu et al., 2011), gas sensors (Basu and
Bhattacharyya, 2012; Llobet, 2013), nanoopto-mechanical system
(Hierold et al., 2007; Lu et al., 2007) etc. Nanomaterial's such as
carbon nanotubes (CNTs) (lijima, 07 November 1991), boron nitride
nanotubes (BNNTs) (Chopra et al., 18 August 1995), zinc oxide
nanotubes (ZnO) (Liu and Zeng, 2009) and graphene sheet (Geim
and Novoselov, 2007) are the basis material of many

* Corresponding author.
E-mail address: murmutony@gmail.com (T. Murmu).

http://dx.doi.org/10.1016/j.euromechsol.2015.06.014
0997-7538/© 2015 Elsevier Masson SAS. All rights reserved.

nanostructures and nanodevices. These nanomaterial's have
extraordinarily properties resulting from their nanoscale di-
mensions (Guz et al., 2007; Gouadec and Colomban, 2007; Kuo
et al,, 2005; Dresselhaus et al., 2004; Ruoff et al., 2003). Perform-
ing controlled experiments at the nano-level is very difficult and
expensive. Therefore, development appropriate mathematical
models based on Eringen's continuum theory, which takes into
account size effect and atomic forces is very important. By ignoring
these effects in the development of mathematical models of
nanoscale structures can cause completely incorrect solutions and
hence erroneous designs. According to a paper (Eringen and Edelen,
1972), Eringen derived a constitutive relation in integral form,
based on the assumption that the stress at the point is function of
the strain at all points of the elastic body. Since then, many re-
searchers have contributed to the development of nonlocal con-
tinuum theory and application in mathematical modeling of
nanostructures.

Studying the static and dynamical behavior of elastic nanorod,
nanobeam and nanoplates subject of many papers (Ansari et al.,
2010; Akgoz and Civalek, 2013; Aydogdu and Filiz, 2011; Wang
et al., 2006). One of the first applications of the nonlocal contin-
uum theory in nanotechnology is the work presented by Peddieson
et al. (2003). They used the nonlocal elasticity theory to develop
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nonlocal Euler—Bernoulli beam for different boundary conditions.
Also, they are considering application of cantilever beam as micro-
electromechanical actuator. Lately, nonlocal theories for the
Euler—Bernoulli, Timoshenko, Reddy and Levinson beams are
derived by Reddy (Reddy, 2007) in a unique way using Hamilton's
principle and nonlocal constitutive relation of Eringen. The author
is obtain analytical solution of banding, vibration and buckling and
showed the effect of nonlocal parameter on deflections, buckling
load and natural frequencies. In the paper, presented by Reddy and
Pang (Reddy and Pang, 2008), the equations of motion of
Euler—Bernoulli and Timoshenko beam theories are reformulated
by Eringen nonlocal theory, and then used to evaluate static
bending, vibrations, and buckling response of carbon nanotubes
with several boundary conditions. The influences of nonlocal
parameter and aspect ratio on the natural frequency, static
deflection and buckling load are considered. The small scale effect
on the axial vibration of a tapered nanorod based on the nonlocal
elasticity theory is studied by Danesh et al. (2012). The governing
equations are solved by using the differential quadrature method
for three type of boundary conditions, clamped—clamped (C—C),
clamped—free (C—F) and fixed-attached spring boundary condi-
tions. Also, it is show that the nonlocal effect plays an important
role in the axial vibration of nanorods. The free vibration of double-
nanorod system is investigated by Murmu and Adhikari (2010).
Based on Eringen's nonlocal elasticity theory and methods of sep-
arations of variables, they obtained analytical solutions for natural
frequencies for two types of boundary conditions, Clamped—-
Clamped and Clamped—Free. A carbon nanotube embedded in an
elastic medium was modeled by Aydogdu (2012) as a nanorod
surrounded with elastic layers by using the Eringen's nonlocal
elasticity theory. The author compared the longitudinal frequencies
for the nonlocal and classical continuum models. Narendar and
Gopalakrishnan (2011) considered the nonlocal effects in the
axial wave propagation within the system of two nanorods coupled
with an elastic layer. The authors studied the influence of small-
scale (nonlocal) parameter and stiffness of the layer on axial
wave propagation. Hsu et al. (2011) investigated the longitudinal
frequencies of cracked nanobeams for different boundary condi-
tions and using the theory of nonlocal elasticity. A wide study of the
longitudinal, transversal and torsional vibration and instability was
conducted by Kiani (2013) for a system of SWCNTs. Simsek (2012)
used a Galerkin approach to obtain the natural frequencies for
the longitudinal vibration of axially functionally graded tapered
nanorods. The author performed the analysis for nanorods with a
variable cross-section, differently tapered ratios, material proper-
ties and boundary conditions. Longitudinal vibration of nanorods,
which takes the nonlocal long-range interactions into account, was
examined by Huang (2012). Chang (2012) considered the small-
scale effects to investigate the axial vibration of elastic nanorods.
The author used the differential quadrature method to solve the
model equations. Filiz and Aydogdu (2010) analyzed the longitu-
dinal vibration of carbon nanotubes with heterojunctions using the
nonlocal elasticity for different lengths, diameters and chirality of
heterojunctions. Karlici¢ et al. (2015) performed a detailed analysis
of the free longitudinal vibrational response of the system with two
coupled viscoelastic nanorods and investigated the influence of
different physical parameters on complex natural frequencies.
Recently, Adhikari et al. (2013) examined the free and forced lon-
gitudinal vibration of the nonlocal nanorod by using two types of
nonlocal damping models. The authors obtained the partial dif-
ferential equation of motion in terms of axial displacements and
then solved by analytical and finite element method. Exact
analytical solutions for cut-off frequency are also obtained when
the number of mode in the complex natural frequency tends to the
infinity.

Damping properties appear in all nanostructures systems and
help to better define suppression vibration behavior. Understand-
ing their source is an important issue, not only for design and ap-
plications in nanoengineering practice but also to understand the
inner workings of the nanomaterial's and nanostructures elements.
Therefore, different technologies have been developed to investi-
gated the damping effects on the vibration characteristics of
damped or viscoelastic nanostructures (Imboden and Mohanty,
2014). Viscoelastic materials displaying both solid-like and fluid
like characteristics, are common in polymeric structures. Energy
dissipation or portion of energy storage from fluid-like part is
irrecoverable and can be separated from energy of deformation
using a complex modulus, which is represented by real and imag-
inary parts named storage and loss modulus, respectively. Thus,
should be paid a more attention to the study of the dynamic
behavior of the nanostructures with viscoelastic properties. The
application of the nonlocal continuum theory to describe the in-
ternal and external damping effects in the structure elements at the
nanoscale level have started recently. Lei et al. (2013a) proposed
two type nonlocal dumped viscoelastic model of nanobeam based
on nonlocal viscoelastic constitutive relations for vibration analysis.
A transfer function methods is applied to obtain analytical solutions
of free vibration for Euler—Bernoulli nanobeam with different
boundary conditions. Also, the influences of material and geometric
parameters on the complex eigenvalue are investigated. In the
paper by Lei et al. (2013b) the dynamical behavior of nonlocal
viscoelastic damped nanobeam has been investigated by using the
Kelvin—Voigt viscoelastic model, velocity-dependent external
damping and Timoshenko beam theory. The authors showed that
nonlocal damped beams have maximum frequencies, called
asymptotic frequencies, and also possess an asymptotic critical
damping factor. The numerical results are presented on carbon
nanotube example. In the paper by Paola et al. (2013) the dynamics
of a nonlocal Timoshenko beam is presented. Nonlocal effects are
modeled as long-range volume forces and moments mutually
exerted by non-adjacent beam segments, that contribute to the
equilibrium of any beam segment along with the classical local
stress resultants. Also, model is provided with elastic and viscous
long-range volume forces and moments which are linearly
dependent on the product of the volumes of the interacting beam
segments and on generalized measures of their relative motion,
based on the pure deformation modes of the beam. The numerical
results are presented for different values of nonlocal parameters.
Vibration behavior of boron nitride nanotubes coupled by visco-
Pasternak layer under a moving nanoparticle was proposed by
Ghorbanpour Arani and Roudbari (2013) who investigated the
nonlocal piezoelastic surface effect. Pouresmaeeli et al. (2013) re-
ported on vibration characteristics of simply supported viscoelastic
orthotropic nanoplates resting on viscoelastic foundation. The au-
thors are obtained closed form solutions of complex frequencies
which includes influence of nonlocal parameter and structural
damping of the nanoplate and foundation. They showed that the
frequency significantly decreases with increasing the structural
damping.

By browsing the literature, the authors have found that some
interesting papers about physics of multiple system of nanorods
(Lao et al., 2002; Wen et al., 2003; Schulz et al., 2005). Nanorods
growing from nanowire core can be viewed as multi-nanorod
system Fig. 1. Mechanical modeling of those systems can be of
great progress for their application and comprehension since ex-
periments on nano-scale level cannot be well controlled. Therefore,
this paper represents an extension of work Karlicic et al. (2015), for
systems of multiple coupled nanorods with viscoelastic properties.
In the following of this work, it is presented an analytical solution of
axial vibrations of a viscoelastic multi-nanorod system embedded
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