
Variational formulations for the linear viscoelastic problem in the
time domain

A. Carini, O. Mattei*

DICATAM, University of Brescia, Via Branze 43, 25123 Brescia, Italy

a r t i c l e i n f o

Article history:
Received 2 December 2014
Accepted 12 May 2015
Available online 5 June 2015

Keywords:
Viscoelasticity
Variational principles
Bounds

a b s t r a c t

Under the assumption of small displacements and strains, we formulate new variational principles for
the linear viscoelastic hereditary problem, extending the well-known Hu-Washizu, Hellinger-Reissner,
Total Potential Energy, and Complementary Energy principles related to the purely elastic problem. In
addition, a new global minimum formulation is derived, giving an energetic interpretation. The new
formulations are based on a convolutive bilinear form of the Stieltjes type and on the division of the time
domain into two equal parts, with the resulting decomposition of the variables and of the equations
governing the problem. In particular, the global minimum principle is achieved by virtue of the positive
definiteness of a part of the split constitutive law operator and by means of a partial Legendre transform,
and is then used to provide bounds of the overall mechanical properties of viscoelastic composite
materials.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The earliest variational formulations for the viscoelastic prob-
lem, although under restrictive assumptions, date back to Biot
(1956), Freudenthal and Geiringer (1958), Olszak and Perzyna
(1959), and Onat (1962), but the first true formulation has to be
ascribed to Gurtin (1963), who generalized the classical elasticity
principles to the linear viscoelastic case, using implicitly a con-
volutive bilinear form. Then, Gurtin, using a method able to
transform initial-boundary value problems into equivalent
boundary value problems, governed by integro-differential equa-
tions, formulated variational principles for the elastodynamics
(Gurtin, 1964a) and for other linear initial value problems (Gurtin,
1964b). Subsequently, Tonti (1973) highlighted the crucial role
played by the choice of a suitable bilinear form, in order to provide
a variational formulation for the given problem. In particular, he
showed how the use of a bilinear form of the convolutive type al-
lows one to provide a variational formulation for initial value
problems, making unnecessary their transformation into problems
with only boundary conditions. The ideas of Gurtin and Tonti have
been exploited by many authors (Schapery (1964), Leitman (1966),

Taylor et al. (1970), Brilla (1972), Reddy (1976), just to name a few)
and they have also been extended to the method of boundary in-
tegral equations (see Carini et al. (1991)).

Hlav�a�cek (1966) proposed extremum formulations for isotropic
viscoelastic materials with Poisson's ratio invariant in time and,
under the same assumptions, a minimum formulation has been
proposed also by Srinatha and Lewis (1982).

Christensen (1968, 1971), using state functions such as the free
energy, proposed an extremumvariational formulation, valid under
restrictive assumptions. Applications of his results have been car-
ried out by Kulejewska (1984).

Rafalski (1969, 1972, 1979) formulated extremum principles
based on a bilinear form with respect to which the operator of nth
derivation, with the initial conditions, proves to be self-adjoint and
positive definite.

Breuer (1973) established minimum principles for incompress-
ible viscoelastic solids. For the non-linear thermo-viscoelastic
problem, new variational principles have been developed by Biot
(1976).

Reiss and Haug (1978), expounding the ideas of Rafalski,
formulated extremal principles for problems with initial values,
including the problem of hereditary viscoelasticity.

Huet (1992), through the use of pseudo-convolutive and
pseudo-biconvolutive bilinear forms, although under restrictive
assumptions, obtained two principles, extensions of the minimum* Corresponding author.
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principles of Total Potential Energy and Complementary Energy
related to the linear elasticity.

Tonti (1972) provided a general criterion of “potentiality”, in
search of variational principles. Magri (1974) illustrated the way to
contrive suitable bilinear forms, with respect to which a given
linear operator proves to be symmetric, and then stated a
constructive method to endow any linear problem with a varia-
tional formulation. Tonti (1984) generalized the method to any
non-linear problem. The latter approach was applied also to the
linear viscoelasticity case (see Carini et al. (1995) and Carini and De
Donato (2004)).

Many efforts have been carried out with the purpose of
extending, to the viscoelastic case, the results obtained within the
framework of the homogenization theory elaborated for the elastic
case, with particular attention to the bounds of the “overall prop-
erties”. This has been done, primarily, through quasi-elastic ap-
proximations, for special temporal values, in the domain of the
Laplace transform and for methods based on complex moduli (see
Hashin (1965), Schapery (1964), Minster (1973), Roscoe (1969,
1972), Ch�etoui (1980), Ch�etoui et al. (1986), Huet (1995),
Cherkaev and Gibiansky (1994), Gibiansky and Milton (1993),
Vinogradov and Milton (2005)). Few results have been achieved
regarding the bounds of the creep and relaxation viscoelastic
functions in the time domain, and only under restrictive assump-
tions (see Christensen (1969)) or as pseudo-elastic approximations
(see Schapery (1974)). The work of Milton (1990), thanks to its
generality, can be easily extended to time-dependent problems,
although it has not been formulated explicitly to that purpose,
leading to a variational formulation also for the viscoelasticity case.
Finally, Huet (1995), using the concept of pseudo-convolutive
bilinear form, derived useful unilateral and bilateral bounds for
the relaxation function tensor.

In this paper we formulate five new principles: four are of the
variational type and one of the minimum type. The new formula-
tions are gathered from the decomposition of the time interval into
two subintervals of equal length. Separating the variables defined
over the first subinterval from those related to the second one, we
obtain a formal doubling of the unknowns. Accordingly, the
constitutive law operator is split into sub-operators, arranged into a
two-by-two matrix that is symmetric with respect to a bilinear
form of the convolutive type in the time variable. On the main di-
agonal, we have two operators: one is null and the other is positive
definite, since the related quadratic form physically represents a
free energy, positive by virtue of the results obtained in the ther-
modynamics field by Staverman and Schwarzl (1952a,b), Coleman
(1964), Mandel (1966), Coleman and Mizel (1967), Brun (1969),
Del Piero and Deseri (1996, 1997) and Amendola et al. (2012).

Nevertheless, the quadratic convolutive form associated with
the whole constitutive law is not convex but, applying a partial
Legendre transform, it is possible to reformulate the constitutive
law so that the associated quadratic form is convex. This is a well-
known technique (see Callen (1960)), used also by Cherkaev and
Gibiansky (1994). The resulting minimum formulation allows one
to seek bounds of the mechanical properties of a homogenized
solid, given those of the viscoelastic constituents of the heteroge-
neous medium. Such inequalities are formally similar to those ob-
tained by Cherkaev and Gibiansky (1994), and Milton (1990) in the
frequency domain.

The paper is organized as follows. In Section 2, the linear
viscoelastic problem is presented. In Section 3 and 4, respectively,
the constitutive law (in the Boltzmann form) and the whole prob-
lem are rephrased on the basis of the decomposition of the time
domain. Furthermore, in Section 4, the five variational formulations
are provided. In Section 5, the problem is written for an RVE of a
composite material made of viscoelastic phases and, in Section 6,

bounds of the homogenized mechanical properties of the com-
posite are shown. In Section 7, similar results are obtained in case
the constitutive law is written in the Volterra form. Finally, in
Section 8, the concluding remarks are presented.

2. The linear viscoelastic problem

Let us consider a body U3ℝ3 made of a linear viscoelastic ma-
terial, that may be heterogenous and anisotropic. An orthogonal
Cartesian reference system is used, with coordinates xr , r ¼ 1,2,3.
The components of vectors, second order and fourth order tensors
are indicated with the usual indicial notation. Einstein's convention
over repeated indices is adopted.

The aim is to determine the displacement, strain and stress
fields at every point of the material, for every time t in the interval
[0,2T], with T > 0, being the solid undisturbed for t < 0.

Let us denote by V the volume of the region U and by G ¼ Gu∪Gp

the external surface, with unit outward normal ni(xr). Let ui(xr,t),
εij(xr,t) and sij(xr,t) be, respectively, the displacement, strain and
stress fields at the point xr2U, at the time t2[0,2T]. The stress field
sij(xr,t), with sij(xr,t) ¼ 0 for t < 0, satisfies the equilibrium
equations:

sij=jðxr; tÞ þ biðxr; tÞ ¼ 0 in U� ½0;2T�
sijðxr ; tÞnjðxrÞ ¼ piðxr; tÞ on Gp � ½0;2T� (1)

where bi(xr,t) are the volume forces, pi(xr,t) the surface forces
imposed on Gp, and the symbol / indicates the partial derivative
operation. The displacement field ui(xr,t) and the strain field εij(xr,t),
with ui(xr,t) ¼ 0 and εij(xr,t) ¼ 0 for t < 0, fulfill the strain-
displacement relations:

εijðxr; tÞ ¼
1
2

�
ui=jðxr; tÞ þ uj=iðxr ; tÞ

�
in U� ½0;2T�

uiðxr; tÞ ¼ u0i ðxr; tÞ on Gu � ½0;2T �
(2)

where u0i ðxr ; tÞ is the displacement field imposed on Gu.
In this paper we deal only with non-aging materials (i.e., we

consider only the hereditary viscoelasticity case), for which the
direct constitutive law, that relates the strain field εij(xr,t) to the
stress field sij(xr,t), in the Boltzmann form, reads as follows:

sijðxr; tÞ ¼
Zt

0�

Rijhkðxr; t � tÞdεhkðxr; tÞ (3)

where the integral has to be meant in the Stieltjes sense, and
Rijhk(xr,t), with t > 0 (we assume that Rijhk(xr,t) ¼ 0 for t < 0), is the
relaxation kernel. In particular, the latter is a tensor of the fourth
rank whose components, functions of time and location, are
obtained for a unit-step strain history. Equation (3) derives
directly from the Boltzmann superposition principle (see
Boltzmann (1874, 1878)), and it provides the stress field at the
time t, in the fixed point xr2U, due to the strain increments
dεij(xr,t), for t2[0,t].

Suppose that the relaxation tensor satisfies the following sym-
metry properties, as in elasticity:

Rijhkðxr; tÞ ¼ Rjihkðxr; tÞ ¼ Rijkhðxr; tÞ
¼ Rhkijðxr; tÞ cxr2U; ct2½0;2T � (4)

and that the following inequalities

R0ijhk xrð Þgijghk >0; R∞ijhk xrð Þgijghk >0 (5)
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