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1. Introduction

In the uniform media, waves travel outward from the source in
concentric circles. However, when they encounter some obstacles
(defects) in their path, the new refracted and reflected waves
appear and the circular symmetry is broken. Generally speaking,
the defects affect the propagation of waves in the whole structure.
It is natural to ask: 1) how does the wave amplitude at different
points of the medium depend on the defects? 2) how to recover the
properties of defects from the information about wave amplitudes
at some points? 3) how to find the defect properties that model
desired amplitudes of waves at fixed points of the medium? These
and similar problems are related to non-destructive testing in
general and appear in areas such as structural geology inversion,
medical imaging, and modeling of cloaking devices. In the current
research, we try to study some of these problems analytically. So,
we try to find explicit formulas for the amplitudes of waves prop-
agating in the uniform media with defects and sources and use it
for explicit solutions of the direct and inverse problems mentioned
above.

Recall some theoretical and mostly practical results devoted to
the waves in complex media with defects, see more detailed dis-
cussions in Kutsenko (2014, 2015). Some general observations
related to periodic structures without defects can be found in
Brillouin (2003), Pennec et al. (2010), Torrent et al. (2013). Periodic
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structures with linear defects have been used in the study of wave-
guides, see, e.g., (Colquitt et al., 2013; Coatleven, 2012; Zhi et al.,
2003; Yamada, 2011; Kim, 2010; Joseph and Craster, 2013;
Korotyaeva et al., 2014). Various periodic boundaries of the media
can also be considered as linear defects, see, e.g., (Karpov et al.,
2005; Shuvalov et al, 2013; Kutsenko and Shuvalov, 2013;
Korotyaeva et al., 2013). Local and point defects in periodic media
have been treated in Maradudin (1965), Osharovich and Ayzenberg-
Stepanenko (2012), Movchan and Slepyan (2007), Makwana and
Craster (2013), Yao et al. (2009), Joly and Fliss (2012). The above-
mentioned articles mostly have dealt with continuous media. At
the same time, the discrete analogues of continuous structures are
often more convenient for analysis and even have some practical
advantages. For example, advanced discrete models within multi-
scale methodologies (see, e.g., Karpov et al., 2005, 2007; Norris,
2014; Forest, 2009; Berezovski et al., 2009; Vernerey et al., 2007)
allow us to study the properties of the media that are not available
in pure continuous models. Various quantum-mechanical proper-
ties of microstructures have been studied with the help of discrete
periodic operators acting on some lattices, see, e.g., (Lahiri et al.,
2010; Korotyaev and Kutsenko, 2010; Badanin et al, 2013;
Korotyaev and Saburova, 2014; Terrones et al., 2012). We also
mention the papers Osharovich et al. (2010a, 2010b), Sohn and
Krishnaswamy (2007) which study the local sources of waves in
discrete media. The most popular methods of wave modeling in
complex media are approximative and are based on the so-called
supercell approaches (most of the above works). Defect modes
can also be obtained approximately by asymptotic homogenization
methods, see, e.g., (Joseph and Craster, 2013). Some analytic and
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semi-analytic algorithms involve multidimensional monodromy
matrices, Dirichlet-to-Neumann operators, Green functions and
explicit analysis of some algebras of multidimensional integral
operators with defects, see, e.g., (Korotyaeva et al., 2014; Joly and
Fliss, 2012; Martin, 2006; Kutsenko, 2014, 2015).

The current research is inspired by Rakesh and Uhlmann (2014),
where the authors considered the problem of recovering smooth
compactly supported potential g in the continuous equation of
Schrodinger type Uy — AU + qU = 0 from its far backscattering data.
In the present paper, we consider the discrete wave equation
S?Uy — AdiscU + F = 0 with sources F and try to recover the
slownesses S from the information about the amplitudes of waves
observed at some nearby points of the lattice. For this reason, we
modify and adapt the general method from Kutsenko (2014) and
Kutsenko (2015) to obtain the analytic solution of the discrete wave
equation with local sources and defects. Note that in contrast to
Kutsenko (2014) and Kutsenko (2015) we will seek the solution for
frequencies belonging to the propagating spectrum (passbands).
There is no exponential decay away from the defect for the waves at
these frequencies, whereas such decay is usual for localised modes
in spectral gaps (stopbands). The new aspect here is also the
presence of sources. It simplifies the exact analytic solution of the
wave equation because we do not need to seek eigenvalues of
system matrices as it must be done for the propagating, guided and
localised modes without permanent sources, see Kutsenko (2014)
and Kutsenko (2015). The obtained analytic solutions can be used
for the analysis of inverse problems, e.g., determining of defects
from the available amplitudes of waves. For example, this kind of
problems arises naturally in seismic inversion (see, e.g., Virieux
et al, 2012) and is usually solved approximately (and non-
uniquely) by using some stochastic algorithms or some iterative
descent methods.

All results are presented for two-dimensional (2D) lattices. At
the same time, the method can easily be generalized to the tree-
dimensional case. We note also another interesting aspect. To
avoid reflection from boundaries in supercell methods, some kind
of absorbing boundary conditions (e.g., PML) should be applied. In
our case, there are no reflections from the artificial boundaries
because we do not have them and our exact formulas model the
wave propagation through an infinite lattice.

2. Core of the method
2.1. Discrete wave equation

Consider the 2D discrete uniform lattice Z2. At the points
neNFc7? we put the sources of harmonic waves Fu(t) = e {f;
with the same frequency w and, possibly, different constant am-
plitudes f;. Consider the following equation of wave propagation in
the lattice

AgisarUn(t) = SgUn(t) + D Fy(t)own. neZ?, (1)

neNg

where the discrete Laplacian is

AgiscrUn = Z (Un' — Un), (2)
n’~n
~ means neighboring points, ¢ is the Kronecker delta, Sy, is the
slowness at the point n, and U = Uy(t) is the time-dependent anti-
plane displacement. Assuming the time-harmonic displacements
Un(t) = e~y with constant amplitudes up and with the same
frequency w as for the sources, we may rewrite (1) as

Adiscrlin = —wzslzlun + Z Sfobnn. (3)
neN;

Suppose that the uniform slowness s is the same at all points of
the lattice except some set of defect points A'pcZ?, i.e.

2 2
7\N
2 _ { s?, ne D @
" s?+s2, nenp,
where sy, is a perturbation of the constant slowness s. Substituting
(4) into (3) leads to

((ws)2 + Adiscr) Un=-> > Splndun+ > fwdwn.  (5)

n'eNp nenNF

The linear one-to-one mapping Four-

ier—Floquet—Bloch transformation)

(so-called

F:e? (ZZ) —>L2<[—7r,7r]2), F(un)pe2=v(K)= Z upe™k  (6)

nez?

allows us to rewrite the infinite linear system (5) as a functional
equation on v(k), k = (k1,k2) € [—m,x]% The corresponding Hilbert
spaces of square-summable sequences and square-integrable
functions are denoted in (6) by 2% and L2, respectively. The in-
verse mapping of F is

F1.12 ([ - 77]2> g2 (zz), F = (un)ye 2,
1

= —in-k
Up = (27r)2 f/[,mﬁ]ze U(k)dlg

(7

where n-k means the scalar product of vectors n and k. In order to
rewrite (5) in terms of the function v(k) instead of the infinite
vector (un), ;2 We need some properties following from (2) and

(6):

2 2 iok;
F((©8)tn + Bdiserttn)___, = (@9)v+ > (ehw—v)
j=12; o==+1
= Av,
(8)
f(Unén/n)nEzz = e"“""<ve*"“"k>, ‘F(én/n)nezz = ein,'k7 (9)
where

A = (ws)? — 4+ 2cosky + 2cosky, (...) = ﬁ ff[fm]z...dk.

(10)

Taking v = F(un),c,2 and applying F (6) to both sides of
Equation (5) and using (8)—(10) we can rewrite (5) into the
equivalent form

Av = —w?a*S(va) + b'f, (11)

where " means the Hermitian conjugation,
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