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� Performance degradation of lithium-ion battery over the cell lifetime is quantified.
� State estimators with the different time scales are developed for SOC and SOH identification.
� Capacity fade and power fade are accurately characterized.
� SOC estimator is accurate and robust over the life span of the battery cell.
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a b s t r a c t

A combined SOC (State Of Charge) and SOH (State Of Health) estimation method over the lifespan of a
lithium-ion battery is proposed. First, the SOC dependency of the nominal parameters of a first-order RC
(resistor-capacitor) model is determined, and the performance degradation of the nominal model over
the battery lifetime is quantified. Second, two Extended Kalman Filters with different time scales are
used for combined SOC/SOH monitoring: the SOC is estimated in real-time, and the SOH (the capacity
and internal ohmic resistance) is updated offline. The time scale of the SOH estimator is determined
based on model accuracy deterioration. The SOC and SOH estimation results are demonstrated by using
large amounts of testing data over the battery lifetime.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Lithium-ion batteries have been widely used in modern elec-
trified vehicles. The reliable, efficient, and safe operation of lithium-
ion batteries requires monitoring, control and management. For
battery management systems, a core function is to provide accurate
estimates of State of Charge (SOC) and State of Health (SOH) of
batteries, which is challenging due to the lack of sensors for elec-
trochemical phenomena inside the cells.

Many methods were proposed to estimate the battery SOC, each
with its own advantages and disadvantages, as summarized in
Table 1. The Coulomb counting method and open circuit voltage

method are widely used in battery management systems of elec-
trified vehicles. They are easy to use and fast in computation, but
the former highly relies on the performance of current sensor, and
the latter is not effective for batteries with flat open-circuit-voltage
curve. Another disadvantage for Coulomb counting is that this
method is open-loop estimation and may have large accumulated
error due to uncertainties or disturbances [1e5]. Moreover, it re-
quires accurate initial SOC value. Many artificial intelligence-based
methods have been applied to establish black-box SOC estimation
models, such as neural network [6], fuzzy logic [7], and support
vector regression (SVR) models [8]. The Kalman filter (KF) and
sliding mode observer have also been used to predict the battery
SOC. These approaches are model-based, closed-loop, and thus can
use output feedback to keep better robustness than non-feedback
methods. In Refs. [9e11], the extended Kalman filter (EKF)
concept, based on nonlinear state-space models, was used to
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estimate the SOC of a Li-polymer battery. Several other variants of
Kalman filter, e.g. sigma-point KF [12,13], adaptive KF [14e16], Dual
KF [17] and derivative KF [18] have also been used for battery SOC
estimation. The sliding-mode observer technique has also been
used to monitor battery SOC trajectories [19,20].

State of Health (SOH) is a metric to evaluate the aging level of
batteries, which often includes capacity fade and/or power fade.
The commonly used indicators include battery capacity [11], DC
resistance [21], and AC impedance [22]. The SOH estimation
methods mainly include durability model-based open-loop
methods and battery model-based closed-loop method [5]. The
former methods directly predict the changes in capacity fade and
internal resistance. The durability models describe the increase of
SEI film resistance and battery terminal voltage [23,24]. Based on
durability characteristics, a storage life model for lithium cobalt
oxides batteries was given in Ref. [25]. Bloom et al. [26] obtained
the relationship between the battery performance degradation and
ambient temperatures and cycle time. Matsushima [27] also found
that capacity loss exhibits a square root relationship with time. Li
et al. [28] developed an extended Arrhenius model. The battery
model-based closed-loop methods use least-squares methods,
Kalman filtering [29] and other adaptive algorithms (such as fuzzy
logic [30]), to identify the battery capacity and internal resistance
according to the operating data. Sample Entropy was also used to
estimate the battery SOH in Refs. [31e33]. The advantages and
disadvantages of these SOH methods are summarized in Table 1.

Most of the above mentioned battery-state-estimation methods
were developed for either SOC or SOH estimation, and not both. The
intimate coupling feature between SOC and SOH was overlooked.
The accuracy of SOC estimation is heavily influenced by battery
degradation. As batteries degrade, SOC-only estimation algorithms
may lead to large errors. The inaccurate SOC estimations in turn
may mislead the battery SOH calibration. Therefore, simultaneous
estimation of SOC and SOH is quite beneficial. Compared to the
battery SOC variation, battery SOH typically change much more
slowly, necessitating multi-timescale state estimators. In order to
determine the appropriate time scale for the SOH estimator, it is
critical to examine the performance degradation of the battery
model in the context of battery aging. Themulti-scale EKFs are used

to estimate SOC and SOH, and the capacity estimation is periodi-
cally introduced in SOC update equation [34,35]. It is more
computational efficient than a joint estimation [34]. However, the
determination of the two time scales is heavily dependent on the
tuition and calibration.

This paper discusses a model-based combined SOC/SOH esti-
mation method over the lifespan of LiNMC batteries. First, the SOC
dependence of the nominal parameters of a first-order RC (resis-
torecapacitor) model is determined, and the performance degra-
dation of the nominal model is quantified over the battery lifetime.
Second, two EKFs with different time scales are applied to imple-
ment the combined SOC/SOH monitoring: one observer is for real-
time SOC estimation; the other for offline SOH (capacity and in-
ternal resistance) update. The time scale of the SOH estimator is
determined based on the quantified model accuracy degradation.
The SOC and SOH estimation results are demonstrated by using
large amounts of testing data over the battery lifetime.

The remainder of the paper is arranged as follows: Section 2
introduces the battery model structure and battery tests; the
degradation of a nominal battery model is described in Section 3;
the combined SOC/SOH estimation approach and associated results
are discussed in Section 4; Section 5 concludes this paper.

2. Battery modeling

2.1. Equivalent circuit model

Hu et al. [36] compared 12 commonly used equivalent circuit
models and concluded that the first-order RC model is the best
choice considering model complexity, accuracy, and robustness.
Fig. 1 shows the model structure considered. The battery capacity
Ccap is used to quantify SOC level by Eq. (1)

S _OC ¼ � h$Ibatt
3600$Ccap

(1)

The Coulombic efficiency h is simplified as the constant value,
1.0 during the discharge and 0.98 in charging.

Table 1
Advantages and disadvantages of existing SOC and SOH estimation methods.

State of charge (SOC) State of health (SOH)

Method Advantage Disadvantage Method Advantage Disadvantage

Coulomb counting
[1e4]

Simple Open-loop, sensitive to the
current sensor precision, and
uncertain to initial SOC

Durability
model-based
open-loop
method

Durability mechanism
[23,24]

Comprehensive
understanding

Complex, need
accurate input
parameters

Open circuit
voltage
method [5]

Simple Open-loop, sensitive to the
voltage sensor precision,
unsuitable for cells with flat
OCVeSOC curves

Durability external
characteristic [25e28]

Simple and easy to
predict capacity
fade and internal
resistance increment

Based on a large
number of
experiments

Neural network [6] Generic, good nonlinearity
mapping approximation

Sensitive to the amount and
quality of training data

Battery
model-based
parameter
identification
closed-loop
method

DC resistance [21] Simple Not accuracy,
sensitive to
disturbances

Fuzzy logic [7] Generic, good nonlinearity
mapping approximation

Sensitive to the amount and
quality of training data

AC impedance [22] Accuracy Complex

Support vector
machine [8]

Generic, good nonlinearity
mapping

Sensitive to the amount and
quality of training data

Extend Kalman filter
[11,29]

Quite easy to
implement, accurate

Sensitive to modeling
accuracy

Kalman filter
[9e18]

Closed-loop, online,
accuracy

More computationally
expensive than non-feedback
methods, and highly depend
on the model accuracy.

Fuzzy logic [30] Accuracy simple,
accurate

Slow convergence

Sample entropy [31e33] Simple Need large amount
of data

Sliding mode
observer
[19,20]

Closed-loop, online, and
accurate

More computationally
expensive than non-feedback
methods, and highly depend
on the model accuracy.

Discharge voltage [30] Easy Not accurate
Adaptive control system
[31]

Online Sensitive to modeling
accuracy
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