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a b s t r a c t

In this paper, the problem of shear-wave propagation with oblique incidence in a triclinic laminated
composite with perfect contact between the layers and periodic distribution between them is studied. An
asymptotic dispersive method for the description of the dynamic processes is proposed. By assuming a
single-frequency dependency of the solution for the two-dimensional wave equation in a periodic
composite material, the higher-order terms for the displacement in asymptotic expansions are studied.
Analytic solution for the average model is presented with the graphical illustration for a boundary
problem. Numerical examples show that the dispersion curve is in good agreement with the results in
previous literatures. The effects of the unit cell size, wave number and incident angle on the wave
propagation and dispersion relation are also examined.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Many studies in the theory of composite materials are based on
the exploitation of the classical continuummodel implying that the
original heterogeneous medium can be simulated by a homoge-
neous one with certain homogenized (so-called effective) proper-
ties. Such approach comes naturally from the hypothesis of the
perfect rate of microheterogeneity of the composite structurewhen
the microscopic size l of heterogeneities is supposed to be essen-
tially smaller than the macroscopic size L of the whole sample so
that in the first approximation one may assume l/L ¼ 0. However,
this limit is never reached for most practical problems, and in real
composites the microstructural scale effects may result in specific
nonlocal phenomena, which cannot be predicted in the frame of
the homogenized medium theory. Simulating a composite material
as a homogeneous medium and determining the effective elastic
and inertial coefficients by homogenization techniques is one of the
most important steps for the analysis and design of this material as
well as for the nondestructive detection of defects in it. Several
different methods have been developed based on high frequency

homogenization (Craster et al., 2010; Nolde et al., 2011), on a
micromechanical homogenization (Nemat-Nasser and Srivastava,
2011), and by using lattice model approximation (Carta and Brun,
2012).

The elastostatic response of composites has been understood to
be non-local in space (Hill, 1965; Beran, 1968). However, in the
context of inhomogeneous elastodynamics the effective constitu-
tive relations are non-local in both space and time as investigated
by Willis (2009, 2011, 2012). Field integration-based homogeniza-
tion for calculating these overall dynamic properties of composites
has been proposed by several researchers.

There are two categories of homogenization techniques for dy-
namic problems. The first category employs techniques based on
the asymptotic expansion of the displacement field with respect to
the representative volume of the composite (Mazur-Sniady et al.,
2004; Smyshlyaev, 2009; Chen and Fish, 2001). In the second
category, the techniques are based on the analysis of the multiple
scattering caused by plane waves propagating into the composite
(Kim, 2004; Ant�onio et al., 2005; Fang et al., 2009; Wang et al.,
2009; Molero et al., 2011). The present work concerns the first
category of homogenization techniques.

The classical method of asymptotic homogenization describes
the effect of wave dispersion by accounting for the influence of the
first- and second-order terms on the asymptotic expansion for
relatively long wavelengths in fiber reinforced composites as
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shown by Parnell and Abrahams (2006, 2008). This approach fails
when the observation time is relatively long or when the charac-
teristic size of the perturbation is small if it is comparable to the
representative volume element (unit cell).

The present work is related to the study of wave propagation in
triclinic laminated composite materials with applications to dam-
age detection and health monitoring for periodic laminated com-
posites. The dispersive method is considered here for two spatial
dimensions and the propagation of the wave is oblique to the
layering. The present investigation is an extension of previous re-
sults reported at the literature (Vivar-P�erez et al., 2009) for one-
dimensional case.

2. Method of dynamic homogenization

We consider an anisotropic elastic body of a periodic structure
occupying a bounded regionB inℝ3 spacewith Lipschitz boundary
vB ¼ v1B∪v2B such that v1B∩v2B ¼ fwhere v1B and v2B are
boundary portions. It assumed that the region B is made up by
periodic repetition of the unit cell Y in the form of a parallelepiped
with dimensions εyi(i ¼ 1,2,3), where ε is the ratio of the unit cell
size (i.e. period of the structure) to a typical length in the region.
The method is presented for the particular case of anti-plane wave
propagation in a periodically layered triclinic composite with two-
phase materials see Fig. 1, where Gε is the interface separating layer
1 and layer 2, and G is the interface in the unit cell. The medium is
assumed to be layered in the x1 direction, with all material pa-
rameters independent of x2 and x3. The perfect interface conditions
are considered, i.e., the displacements and stresses are continuous
at the interface (Chen and Fish, 2001).

The anti-plane problem is formulated in a bounded subset Uε of
ℝ2, i.e. a boundary-value problem within a two-dimensional
domain in the x1x2-plane. The reference cell is denoted by

Y ¼
n
y ¼ ðy1; y2Þ2ℝ2 : 0< yi < li; i ¼ 1;2

o
;

where li are given positives numbers. Note that the subset Uε is

Uε ¼ εY ¼
n
x ¼ ðx1; x2Þ2ℝ2 : ε�1xi2Y ; i ¼ 1;2

o
;

where y ¼ x/ε.
The anti-plane problem is modeled mathematically in the form

vsε3i
vxi

� rε
v2uε3
vt2

¼ 0 in Uε � �0; t½; (1a)

uε3ðx; tÞ
��
t¼0 ¼ UðxÞ; vuε3ðx; tÞ

vt

����
t¼0

¼ gðxÞ in Uε; (1b)

uε3ðx; tÞ
��
v1U

ε ¼ hðtÞ; sε3ini
��
v2U

ε ¼ qðtÞ for t >0; (1c)

��
uε3
�� ¼ 0;

��
sε3i
��
ni ¼ 0 in Sε; (1d)

where sε3i ¼ C3i3jðx1=εÞ vuε3=vxj and vUε ¼ v1U
ε∪v2Uε such that

v1U
ε∩v2Uε ¼ f; [[�]] denotes the difference of the values on the

opposite sides of the unit cell Y (henceforth, the Latin indices take
values 1 and 2); C3i3jðy1Þ ¼ Cð1Þ

3i3j for 0 < y1 < gl1 and C3i3jðy1Þ ¼ Cð2Þ
3i3j

for gl1 < y1 < l1 (g is the volume ratio of layer 1); Sε is the projection
of Gε on x1x2-plane; and nj is the unit vector in the outward normal
direction.

2.1. Displacement formulation

Elimination of the stress in (1a) leads to the partial differential
equation for uε3

v

vxi

 
C3i3jðy1Þ

vuε3
vxj

!
� rðy1Þ

v2uε3
vt2

¼ 0; (2)

or, with consideration of uε3 ¼ u3ðx; y; tÞ ¼ vðx; yÞ TðtÞ, to the
equivalent differential equations:

d2T
dt2

þ u2T ¼ 0 for t >0; (3a)

LðvÞ þ rðy1Þu2vðx; yÞ ¼ 0 in Uε; (3b)

with the boundary conditions:

v ¼ u0 on v1U
ε; C3i3jðy1Þ

vvðx; yÞ
vxj

ni ¼ S0 on v2U
ε; (4)

under the perfect contact conditions:

½½v�� ¼ 0;

""
C3i3j

vv

vxj

##
ni ¼ 0 on Sε; (5)

where

LðvÞ ¼ v

vxi

 
C3i3jðy1Þ

vvðx; yÞ
vxj

!
;

is an elliptic differential operator in the domain Uε; the prescribed
functions are u02H1(v1Uε); u2rv2L2(Uε); and S02L2(v2Uε). The
coefficients C3i3j(y1) are bounded measurable functions satisfying
the symmetry and ellipticity conditions. The weak solution v(x,y) of
problem (3b) and (4)e(5) exists and is unique (Oleinik et al., 1992).

Introducing the notation

s3iðx; yÞ ¼ C3i3jðy1Þ
vvðx; yÞ
vxj

;

Eq. (3b) can be written in the form

vs3iðx; yÞ
vxi

þ u2rðy1Þvðx; yÞ ¼ 0: (6)

Taking into account a regular asymptotic expansion of the cir-
cular frequency u and following the literature (Sanchez-Palencia,Fig. 1. The layered composite and the unit cell.
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