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a b s t r a c t

Propagation of Rayleigh waves is studied in a three-phase porous solid half-space, which is bounded
above by an impervious plane surface. In this dissipative medium, Rayleigh wave propagates as an
inhomogeneous wave, which decays with distance from the stress-free plane boundary. The impervious
boundary restricts the flow of pore-fluids to the interior of porous solid only. This is ensured by fixing the
fluid-pressure gradient in pores at boundary or with the sealing of surface pores. In either case, the
existence and propagation of inhomogeneous wave are represented by a dispersion equation, which
happens to be complex and irrational. This equation is rationalized into an algebraic equation of degree
24, which is solved for a numerical example. Solutions of the dispersion equation are checked to
represent an inhomogeneous wave decaying with depth. Each qualified solution is resolved to define the
phase velocity and attenuation coefficient of a Rayleigh wave in the medium. Numerical example
compares the velocity and attenuation of Rayleigh wave in porous sandy loam for the two representa-
tions of the impervious boundary, one with sealed pores and other with no fluid-pressure gradient.
Effects of saturation degree, porosity, capillary pressure, pore-fluids viscosity and frame anelasticity are
observed on the propagation characteristics of Rayleigh waves. Existence of second Rayleigh wave is
checked numerically. Such a wave is possible only when the porous frame is highly anelastic and
saturated enough.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Connected pores are ubiquitous in every geological medium
that consists of a rock or soil. The pore space may be occupied by
the mixture of a liquid and a rarefied gas. Such a twin-fluid
mixture in pores represents the partial saturation, when the
liquid fills only a part of the connected pore space and the bubbles
of a rarefied gas span the remaining void space. In other words, a
poroelastic solid saturated with two-phase viscous fluid repre-
sents a fairly realistic model for sedimentary or reservoir rocks.
Then, the study of elastic waves in partially-saturated porous
media may be of great interest in the exploration of subsurface
resources. Biot (1956, 1962a,b) formulated the dynamical equa-
tions for the propagation of elastic waves in a poroelastic solid
saturated completely with a single-phase fluid. Berryman et al.
(1988) considered the extension of Biot's single pore-fluid
formulation to the porous media saturated by multiple fluids. In
another extension of Biot's theory, Pride and Berryman (2003a,b)

considered fluid transport mechanism and used volume aver-
aging technique to derive the governing equations for fluid-
saturated double porosity media. Pride et al. (2004) studied a
mesoscale model, which was based on the heterogeneity in the
pore-fluid type, that is, patchy saturation. In this model, a strong
contrast between the bulk moduli of two immiscible pore-fluids is
held responsible for the large attenuation observed in seismo-
grams. Another approach does not need the description of pore
structure and, hence, seems to be more convenient than the ex-
tensions of Biot's theory. Based on mixture theory, this approach
assumes the uniform existence of non-interacting constituent
phases. Starting with Brutsaert (1964), an extensive survey of
earlier literature on mixture theory is given by Bowen (1976). The
comprehensive procedures relevant to the wave propagation in
porous solids saturated with multiphase fluids are found in
Bedford and Drumheller (1983), Garg and Nayfeh (1986), Santos
et al. (1990a,b) and Corapcioglu and Tuncay (1996). A mathe-
matical model presented recently by Lo et al. (2005) is also based
on continuum mixture theory and accounts for the changes in
capillary pressure and the viscous/inertial coupling among
constituents.
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Body waves in a dissipative medium lose energy in the interior
and induce only minor disturbances near the surface. Surface
waves, however, have the potential to cause destructive vibrations
to structures and buildings. Propagation and attenuation of the
surface waves in liquid-saturated porous media are of increasing
interest in the disciplines of hydrogeology and geomechanics,
notably in borehole logging and onshore/offshore civil engineering.
Jones (1961) studied the propagation of Rayleigh waves in porous
solids saturated with single fluid. In this study, a mathematically
incorrect approach was used to explain the existence of two
different Rayleigh waves. Using the same approach, Lo (2008)
studied the propagation of Rayleigh waves in a porous solid satu-
rated with two-phase fluid and suggested the existence of three
different Rayleigh waves in unsaturated porous medium. The pre-
sent author wrote a comment (Sharma, 2012a) on the procedure
followed by Lo (2008) and then studied the same problem in cor-
rect mathematics (Sharma, 2012b), using a different formulation
(Sharma and Kumar, 2011). A complex irrational dispersion equa-
tionwas derived for the propagation of Rayleigh waves in partially-
saturated porous solid with pervious (fully opened surface pores)
boundary. This dispersion equation was solved, numerically, after
rationalizing into a polynomial form (Currie et al., 1977). The
complex roots of the dispersion equation, which qualify to repre-
sent Rayleigh waves, were resolved to define phase velocities and
quality factors for existing Rayleigh waves.

Present work is a continuation of the earlier work (Sharma,
2012b), i.e., Rayleigh waves in partially-saturated porous medium
with pervious boundary. Pervious boundary is replaced with an
impervious one. Impervious boundary of the porous medium is
represented through the sealing of surface pores (Deresiewicz and
Skalak, 1963) or by the gradient of fluid-pressures in surface pores
(Tajuddin, 1984). Different conditions at the boundary of three-
phase medium result in two dispersion equations for the propa-
gation of inhomogeneous waves. The complex irrational dispersion
equations are rationalized to polynomial forms. In either case, the
resulting algebraic equation of degree 24 can be solved exactly
through numerical methods. The roots, which qualify to represent
the propagation of Rayleigh waves, are identified. Each such root is
resolved to calculate the propagation velocity and quality factor of a
Rayleigh wave in partially-saturated porous medium with imper-
vious boundary. In this study, skeleton refers to drained porous
frame and porous solid refers to composite porous aggregate
saturated by gaseliquid mixture. The words unsaturated and
anelastic are synonyms for partially-saturated and viscoelastic,
respectively.

2. Basic equations

A partially-saturated porous solid is assumed to be a continuum
consisting of solid skeleton with connected void space occupied by
the mixture of a gas and a liquid. The indices ‘s’, ‘g’, ‘l’, are used to
identify the three constituents of composite porous medium, i.e.,
solid grains, pore-gas and pore-liquid respectively. In porous
aggregate with total connected porosity (f), volume fractions of the
constituents are defined as

ds ¼ 1� f ; dg ¼ ð1� sÞf ; dl ¼ sf ; (1)

where s is the fraction of liquid in pore-fluids mixture. Wave mo-
tion in the composite medium is modelled through the mixture
theory (Tuncay and Corapcioglu, 1997), which assumes that the
pore-size should be very small as compared to the wave-length.
Following Lo et al. (2005), the equations of motion for low-
frequency vibrations of constituent particles in isotropic porous
solid, in the absence of body forces, are given by

dst
ðpÞ
ij;j ¼ dsrs €ui�qgð _vi� _uiÞ�qlð _wi� _uiÞ;

�dgp
ðgÞ
;i ¼ dgrg€viþqgð _vi� _uiÞ; �dlp

ðlÞ
;i ¼ dlrl €wiþqlð _wi� _uiÞ; (2)

where p(g),p(l) are pressures in fluid phases and t
ðpÞ
ij is the stress

tensor for drained porous frame. r0s are intrinsic densities of the
constituents. ui, vi and wi denote the components of displacements
of solid, gas and liquid particles, respectively. Dot over a variable
implies partial derivative with time and comma before an index
implies partial space differentiation. A repetition of index
(subscript) implies summation. Darcy's law relates viscous dissi-
pation to the motion of gas and liquid particles relative to pore-
walls. Dissipation coefficients for gas (qg) and liquid (ql) are
defined as follows.

qk ¼ hkd
2
k

.
ðcckÞ; ðk ¼ g; lÞ; (3)

where hk and ck define viscosity and relative permeability of the
fluid phase k. c denotes intrinsic permeability of the porous
medium.

Constitutive relations for stresses in porous skeleton and fluid-
pressures in pore-space are given by Tuncay and Corapcioglu
(1997)

dst
ðpÞ
ij ¼ða11V$uþa12V$vþa13V$wÞdijþGp

�
ui;jþuj;i�

2
3
uk;kdij

�
;

�dgpðgÞ ¼ ða21V$uþa22V$vþa23V$wÞ;
�dlp

ðlÞ ¼ ða31V$uþa32V$vþa33V$wÞ;
(4)

where dij is Kronecker symbol and Gp denotes rigidity of the me-
dium. Elastic coefficients aij are derived in appendix.

3. Rayleigh waves

In Cartesian coordinate system (x,y,z), porous solid occupies the
half-space z > 0, bounded by the plane z ¼ 0. Isotropy in this me-
dium allows to study wave motion in the x-z plane without losing
any information. Hence, all the quantities become independent of
the y-coordinate. Surface of the porous solid is considered to be
free of any resultant force. Following Sharma (2012b), the
displacement potentials fj,(j ¼ 1,2,3), represent the propagation of
three dilatation (P1,P2,P3) waves with velocities a1,a2,a3, respec-
tively. The fourth potential (f4) represents the propagation of shear
wave in x-z plane (i.e., SVwave) with velocity b. Expressions for the
velocities of four waves are given in appendix. For the Helmholtz
resolution, in-plane displacements of solid and fluid phases are
given by

ux ¼
X3
j¼1

vfj

vx
þ vf4

vz
; vx ¼

X3
j¼1

mj
vfj

vx
þm4

vf4
vz

; wx ¼
X3
j¼1

nj
vfj

vx
þ n4

vf4
vz

;

uz ¼
X3
j¼1

vfj

vz
� vf4

vx
; vz ¼

X3
j¼1

mj
vfj

vz
�m4

vf4
vx

; wz ¼
X3
j¼1

nj
vfj

vz
� n4

vf4
vx

;

(5)

where mj and nj are explained in appendix. Expressions (5) are used
in relations (4) to calculate stresses and fluid-pressures.

For the harmonic plane waves propagating in xez plane, the
displacement potentials are chosen as follows.

fj ¼ Aje
ıkðx�ctÞ�kdjz; ðj ¼ 1;2;3;4Þ; (6)
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