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a b s t r a c t

A paper focuses on the application of the method of sampling surfaces (SaS) to three-dimensional (3D)
steady-state thermoelasticity problems for orthotropic and anisotropic laminated plates subjected to
thermal loading. This method is based on selecting inside the nth layer In not equally spaced SaS parallel
to the middle surface of the plate in order to choose temperatures and displacements of these surfaces as
basic plate variables. Such an idea permits the presentation of the proposed thermoelastic laminated
plate formulation in a very compact form. It is worth noting that the SaS are located inside each layer at
Chebyshev polynomial nodes that leads to a uniform convergence of the SaS method. As a result, the SaS
method can be applied efficiently to the 3D stress analysis of cross-ply and angle-ply composite plates
with a specified accuracy utilizing the sufficient number of SaS.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Three-dimensional (3D) exact analysis of laminated composite
plates has attracted the considerable attention during past forty
years. This is due to the fact that the validity of approximate plate
theories and plate finite elements can be assessed by comparing
their predictions with 3D exact solutions. The analytical solution of
elasticity for a simply supported isotropic rectangular plate was
presented by Vlasov (1957). The extensions of Vlasov's solution to
orthotropic laminated plates were done by Pagano (1969, 1970a),
and Srinivas and Rao (1970). Murakami (1993) generalized the
work of Pagano (1969) to the cylindrical bending of simply sup-
ported laminates subjected to thermal loading. Tungikar and Rao
(1994), Noor et al. (1994) and Bhaskar et al. (1996)) derived 3D
exact solutions for laminated cross-ply rectangular plates subjected
to thermomechanical loads. Tauchert (1980) gave 3D exact solu-
tions of thermoelasticity for simply supported orthotropic lami-
nates using the method of displacement potentials. The analytical
solutions for functionally graded single-layer and laminated plates
under mechanical and thermal loads were derived by Cheng and
Batra (2000), Reddy and Cheng (2001), Vel and Batra (2002),
Kashtalyan (2004), and Woodward and Kashtalyan (2011).

Pagano (1970b) presented the exact solution for the cylindrical
bending of laminated composite plates with general layups. The
response of a thermoelastic anisotropic laminated plate in

cylindrical bending was investigated analytically by Bhaskar et al.
(1996), and Vel and Batra (2001). The developments for antisym-
metric angle-ply laminates in the framework of the 3D theory were
carried out by Noor and Burton (1990), Savoia and Reddy (1992,
1995), and Kulikov and Plotnikova (2012a). However, the reliable
3D solutions for thermoelastic laminated composite plates of
general lay-up configurations can not be found in the current
literature. Partially, the present paper serves to fill the gap of
knowledge in this research area.

To solve such a problem, we invoke the efficient method of
sampling surfaces (SaS) developed recently by Kulikov and
Plotnikova (2012a, 2012b, 2013, 2014) for the analysis of ortho-
tropic and anisotropic laminated plates and shells. As SaS denoted
here byUðnÞ1;UðnÞ2;…;UðnÞIn , we choose outer surfaces and any inner
surfaces inside the nth layer of the plate and introduce temperatures
TðnÞ1; TðnÞ2;…; TðnÞIn and displacement vectorsuðnÞ1;uðnÞ2;…;uðnÞIn of
these surfaces as basic plate variables, where In is the total number of
SaS chosen for each layer (In � 3). Such choice of temperatures and
displacements with the consequent use of Lagrange polynomials of
degree In � 1 in the thickness direction for each layer permits the
presentation of governing equations of the thermal laminated plate
formulation in a very compact form. It is necessary to note that the
term SaS should not be confused with such terms as fictitious in-
terfaces or mathematical interfaces, which are extensively used in
layer-wise theories. The main difference consists in the lack of pos-
sibility to employ polynomials of high degree in the thickness di-
rection because in conventional layer-wise thermal shell theories
only third and fourth order polynomial interpolations are admissible
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(see, e.g. Carrera, 2000, 2005; Carrera and Ciuffreda, 2004; Robaldo
et al., 2005; Robaldo and Carrera, 2007). This restricts the use of
the fictitious/mathematical interfaces technique for the 3D thermal
stress analysis of thick laminated composite plates. On the contrary,
the SaS method allows the use of Lagrange polynomials of high de-
gree. This fact gives the opportunity to derive the 3D solutions for
laminated composite plates with a prescribed accuracy employing a
sufficiently large number of not equally spaced SaS.

It is worth noting that the developed approach with the arbi-
trary number of equally spaced SaS (Kulikov and Plotnikova, 2011)
does not work properly with the Lagrange polynomials of high
degree because the Runge's phenomenon can occur, which yields
the wild oscillation at the edges of the interval when the user deals
with any specific functions. If the number of equally spaced nodes is
increased then the oscillations become even larger. However, the
use of Chebyshev polynomial nodes (Burden and Faires, 2010) in-
side each layer can help to improve significantly the behavior of the
Lagrange polynomials of high degree because such a choice allows
one to minimize uniformly the error due to Lagrange interpolation.

The origins of using the SaS can be found in contributions of
Kulikov (2001) and Kulikov and Carrera (2008) in which three, four
and five equally spaced SaS are employed. The SaS method with the
arbitrary number of equispaced SaS is considered by Kulikov and
Plotnikova (2011). The more general approach with the SaS
located at Chebyshev polynomial nodes has been developed later
(Kulikov and Plotnikova, 2012a, 2012b).

2. Description of temperature field

Consider a laminated plate of the thickness h. Let the middle
surface U be described by Cartesian coordinates x1 and x2. The co-
ordinate x3 is oriented in the thickness direction. The transverse
coordinates of SaS inside the nth layer are defined as

xðnÞ13 ¼ x½n�1�
3 ; xðnÞIn3 ¼ x½n�3 ;

xðnÞmn
3 ¼ 1

2

�
x½n�1�
3 þ x½n�3

�
� 1
2
hn cos

�
p
2mn � 3
2ðIn � 2Þ

�
;

(1)

where x½n�1�
3 and x½n�3 are the transverse coordinates of layer in-

terfaces U[n�1] and U[n] (Fig. 1); hn ¼ x½n�3 � x½n�1�
3 is the thickness of

the nth layer; In is the number of SaS corresponding to the nth layer;
the index n identifies the belonging of any quantity to the nth layer
and runs from 1 to N; N is the total number of layers; the index mn

identifies the belonging of any quantity to the inner SaS of the nth

layer and runs from 2 to In � 1, whereas the indices in, jn, kn to be
introduced later for describing all SaS of the nth layer run from 1 to
In. Besides, the tensorial indices i, j, k, l range from 1 to 3 and Greek
indices a, b range from 1 to 2.

Remark 1. The transverse coordinates of inner SaS (1) coincide
with the coordinates of Chebyshev polynomial nodes (Burden and
Faires, 2010). This fact has a great meaning for a convergence of the
SaS method (Kulikov and Plotnikova, 2012a, 2012b).

The relation between the temperature T and the temperature
gradient G is given by

G ¼ VT : (2)

In a component form, it can be written as

Gi ¼ T;i; (3)

where the symbol (…),i stands for the partial derivatives with
respect to coordinates xi.

We start now with the first fundamental assumption of the
proposed thermoelastic laminated plate formulation. Let us assume
that temperature and temperature gradient fields are distributed
through the thickness of the nth layer as follows:

TðnÞ ¼
X
in

LðnÞin TðnÞin ; x½n�1�
3 � x3 � x½n�3 ; (4)

G
ðnÞ
i ¼

X
in

LðnÞinGðnÞin
i ; x½n�1�

3 � x3 � x½n�3 ; (5)

where TðnÞin ðx1; x2Þ are the temperatures of SaS of the nth layer
UðnÞin ; GðnÞin

i ðx1; x2Þ are the components of the temperature gradient
at the same SaS; LðnÞin ðx3Þ are the Lagrange polynomials of degree
In � 1 defined as

TðnÞin ¼ T
�
xðnÞin3

�
; (6)

G
ðnÞin
i ¼ Gi

�
xðnÞin3

�
; (7)

LðnÞin ¼
Y
jnsin

x3 � xðnÞjn3

xðnÞin3 � xðnÞjn3

: (8)

The use of relations (3), (4), (6) and (7) yields

GðnÞin
a ¼ TðnÞin;a ; (9)

G
ðnÞin
3 ¼

X
jn

MðnÞjn
�
xðnÞin3

�
TðnÞjn ; (10)

where MðnÞjn ¼ LðnÞjn;3 are the derivatives of Lagrange polynomials,
which are calculated at SaS as follows:
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�
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�
¼ 1
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�
:

(11)

It is seen from Eq. (10) that the transverse component of the

temperature gradient GðnÞin
3 is represented as a linear combination of

temperatures of all SaS of the nth layer TðnÞjn .Fig. 1. Geometry of the laminated plate.
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