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a b s t r a c t

A four-node quadrilateral element is developed for the dynamic analysis of doubly curved functionally
graded material (FGM) shallow shells, using the refined third order theory. Two micromechanics models,
the Voigt's rule of mixtures (ROM) and the MorieTanaka model, are considered for computing the
effective material properties at a point. The accuracy of the element is examined by comparing with
various three dimensional elasticity and two dimensional (2D) analytical and finite element solutions
available in the literature for static and free vibration responses of FGM plates and shells. It is shown that
the present element, with the least number of degrees of freedom, achieves similar or better accuracy
compared to other available 2D finite elements some of which are even based on higher order theories.
Using this element, we also make a systematic assessment of the accuracy of the widely used ROM in
predicting the behavior of FGM structures, for different values of the inhomogeneity parameter, and
different geometrical parameters, boundary conditions, and material combinations. It is revealed that
there can be very significant error in the deflection, stresses and natural frequencies predicted by the
ROM, depending primarily on the inhomogeneity parameter and the difference in the material properties
of the constituents.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Though commonly used by mother nature (e.g. in bamboo,
bone, skin etc.), the concept of functionally graded materials
(FGMs) as engineered materials was first introduced by Cavanagh
et al. (1972), while trying to develop crack-free thermal barrier
coating of gas turbine blades. The basic idea is to develop a com-
posite material of two constituents (e.g., metal and ceramic) with a
gradually varying composition from one surface to another, so that
the large jumps in the inplane stresses and high interlaminar out-
of-plane stresses that are induced when the materials are directly
bonded to one another (e.g. in a conventional thermal barrier
coating), are reduced and the resultant debonding or cracking is
avoided (Kieback et al., 2003). There are a number of other ad-
vantages such as an improved distribution of residual stresses,
enhanced thermal properties, higher fracture toughness, and
reduced stress intensity factors (Birman and Byrd, 2007), which

make them suitable for a wide number of engineering applications,
such as spacecraft heat shields, nuclear power reactors, heat
exchanger tubes, and biomedical implants. This is why recent years
have witnessed intense research activities on the manufacturing,
designing, modeling and analysis of functionally graded materials
and structures.

A large body of literature is available on the theoretical
modeling and analysis of beam, plate and shell-type FGM struc-
tures, recent reviews of which can be found in Birman and Byrd
(2007); Jha et al. (2013a). The accuracy of these models depends
on (i) the micromechanical model for the estimation of effective
material properties of the FGM, and (ii) the kinematic model, i.e.,
the displacement field approximations across the thickness direc-
tion. In several studies, the effective properties of the FGM are
directly assumed to follow a definite variation in the thickness di-
rection, such as the exponential variation (Kashtalyan, 2004; Xu
and Zhou, 2009; Vaghefi et al., 2010; Wen et al., 2011; Pendhari
et al., 2012; Yang et al., 2012; Mantari and Soares, 2013; Thai and
Kim, 2013; Sofiyev and Kuruoglu, 2014) and the power law varia-
tion (Yang et al., 2012). For design, it is more appropriate to specify
the variation of the volume fractions of the constituents, and
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moreover, it may not be possible to physically realize certain
assumed property distributions for certain material combinations
(Zuiker, 1995).

For calculating the effective properties of functionally graded
composites for given volume fractions andmicrostructure, a variety
of micromechanical models have been proposed, themost common
ones being the Voigt's rule of mixtures (ROM), modified rule of
mixtures (MROM) (Tomoto et al., 1976), MorieTanaka method
(MTM) (Mori and Tanaka, 1973), and the self-consistent method
(Hill, 1965). These models essentially differ from each other in the
degree to which they account for the interactions among the
adjacent inclusions. The simplest approach, ROM, neglects this
interaction altogether, and has been shown to yield very erroneous
predictions of the elastic modulus. As an example, a comparison of
the Young's modulus of Al/SiC composite predicted by the ROM
with the experimental results of Bhattacharyya et al. (2007) is
presented in Table 1, which shows an error of 38% in the ROM for a
ceramic volume fraction of 40%. Still, many studies continue to use
the ROM for modeling FGM structures (Reddy, 2000; Woo and
Meguid, 2001; Sofiyev, 2003; Croce and Venini, 2004; Patel et al.,
2005; Abrate, 2006; Zenkour, 2006; Pradyumna and
Bandyopadhyay, 2008; Han et al., 2009; Tornabene et al., 2009;
Akbarzadeh et al., 2011; Hamidi et al., 2012; Viola et al., 2012; Qu
et al., 2013; Ebrahimi and Najafizadeh, 2013; Thai and Choi, 2013;
Thai and Kim, 2013).

The MorieTanaka model accounts for the interaction of the
elastic fields of neighboring inclusions, and yields accurate pre-
diction for composites with awell-defined continuous matrix and a
discontinuous particulate phase. This can be seen from Table 1
which shows a close agreement of the effective Young's modulus
predicted by the MTM with experimental results for Al/SiC FGM.
Few studies have used the MTM for obtaining the response of FGM
plates and shells (Vel and Batra, 2004; Gilhooley et al., 2007; Fares
et al., 2009; Mojdehi et al., 2011; Reid and Paskaramoorthy, 2011;
Mantari et al., 2012; Neves et al., 2012; Taj et al., 2013; Thai and
Choi, 2013; Cinefra et al., 2012). Shen and Wang (2012) presented
a comparison of the Voigt and MorieTanaka models for the natural
frequencies of FGM plates, and did not find significant difference
between the two models. However, this is because the constituents
of the materials chosen for the study did not have wide differences
in properties. Vel and Batra (2004) employed the self consistent
method also for the analysis of FGM plates, which is suitable for an
interconnected skeletal microstructure without the predominance
of any one phase. Kapuria et al. (2008) employed the MROM for
predicting the bending and vibration response of layered FGM
beams, which showed excellent agreement with experiments. The
MROM, however, needs an additional fitting parameter to be
determined experimentally. The experiments also established the
inaccuracy of the ROM based predictions.

With regard to the kinematic modeling, many three-
dimensional (3D) elasticity based solutions and two dimensional
(2D) plate and shell theories have been developed for obtaining

response of FGM structures. Several 3D elasticity solutions for static
and dynamic responses have been presented (Vel and Batra, 2002,
2004; Kashtalyan, 2004; Xu and Zhou, 2009; Mojdehi et al., 2011;
Wen et al., 2011; Pendhari et al., 2012; Yang et al., 2012), which
differ from each other in terms of the distribution of effective
material properties in the thickness direction, and the solution
method (e.g. power series expansion, radial basis function etc.).
These solutions, available for specific geometry and boundary
conditions, serve as useful benchmarks for assessing the accuracy
of various 2D theories.

The development of 2D models for FGM structures has been
primarily directed towards extending the classical thin plate/shell
theory (CPT/CST) based on Kirchhoff/Love's assumptions, which
neglects shear deformation, as well as the shear deformable the-
ories such as the first order shear deformation theory (FSDT), the
refined third order theory (TOT), and the higher order theories
(HOTs) from the homogeneous case to the case of varying material
properties across the thickness direction. Several analytical and
global approximate solutions have been presented using these
theories. These include the Navier-type solution for bending of
simply-supported FGM rectangular plates (Chi and Chung, 2006)
and shallow spherical shells of rectangular planform (Woo and
Meguid, 2001), and the Rayleigh-Ritz solution (Loy et al., 1999;
Pradhana et al., 2000; Sofiyev, 2003) and the generalized differ-
ential quadrature (GDQ) solution (Ebrahimi and Najafizadeh, 2013)
for free vibration and dynamic buckling of FGM cylindrical shells of
arbitrary boundary conditions, using the classical shell theory.
Similarly, Levy-type solution (Hashemi et al., 2011) for free vibra-
tion of FGM plates, GDQ solution for free vibration of FGM shells
(Tornabene and Viola, 2013) and multisegment polynomial
approximation based solution (Qu et al., 2013) for free and forced
vibration of FGM shells of revolution, have been presented using
the FSDT. Ferreira et al. (2005, 2006) employed the collocation
multiquadric radial basis function method (RBF) to obtain the static
and free vibration responses of rectangular FGM plates, and
Akbarzadeh et al. (2011) and Oktem et al. (2012) presented Navier-
type solutions for simply-supported FGM rectangular plates and
doubly curved shells, respectively, using the TOT. Other studies
using the TOT and HOTs include the GDQ solution for static
response (Viola et al., 2012) and Galerkin solution (Sofiyev and
Kuruoglu, 2014) for vibration and buckling response of FGM cy-
lindrical shells. Comparisons of these 2D solutions with the 3D
elasticity solutions have revealed that the absence of transverse
shear deformation effect causes significant error in the CPT/CST
predictions, for moderately thick and thicker FGM structures (Vel
and Batra, 2004). However, the results from the FSDT and the TOT
compare well with the 3D solutions.

The finite element method (FEM) is a convenient and widely
used tool for obtaining solutions for practical structures of arbitrary
shapes, boundary conditions and loading. Croce and Venini (2004)
presented a hierarchic family of rectangular finite elements based
on the FSDT for FGM plates. The FSDT, however, requires shear
correction factors for the transverse shear stresses, which are
arbitrary. The TOT does not need such arbitrary correction factors,
but requires the interpolation function for the deflection to have C1-
continuity, which poses difficulty in developing conforming
quadrilateral elements. Reddy (2000) presented conforming and
nonconforming rectangular elements with eight and seven degrees
of freedom (DOFs) per node based on the TOT, using the Hermite
interpolation functions for the deflection, which are valid only for a
rectangular shape. A similar C1-continuous four-node rectangular
plate element with ten DOFs per node has been presented by
expressing the transverse displacement in terms of bending and
shear components, and considering the shear term in the inplane
displacement to have a (i) cubic, (ii) sinusoidal, and (iii) hyperbolic

Table 1
Effective Young's modulus Al/SiC composite.

Y (GPa) Al/SiC ratio

90/10 80/20 70/10 60/40

Expt.a 77.1 88.5 101.6 116.8
ROM 90.5 (17.4) 114.0 (28.8) 137.5 (35.3) 161.0 (37.8)
MTM 76.5 (0.8) 87.3 (1.4) 99.7 (1.9) 114.2 (2.2)

The values in the bracket represent the error in the Young's modulus with respect to
their experiential values.

a (Bhattacharyya et al., 2007). Materials properties: For Al, Y ¼ 67 GPa, n ¼ 0.33;
For SiC, Y ¼ 302 GPa, n ¼ 0.17.
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