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a b s t r a c t

Stress gradient elasticity and strain gradient elasticity do constitute distinct continuum theories exhib-
iting mutual complementary features. This is probed by a few variational principles herein presented and
discussed, which include: i) For stress gradient elasticity, a (novel) principle of minimum complementary
energy and an (improved-form) principle of stationarity of the HellingereReissner type; ii) For strain
gradient elasticity, a (known) principle of minimum total potential energy and a (novel) principle of
stationarity of the HueWashizu type. Additionally, the higher order boundary conditions for stress
gradient elasticity, previously derived by the author (Polizzotto, Int. J. Solids Struct. 51, 1809e1818, (2014))
in the form of higher order boundary compatibility equations, are here revisited and reinterpreted with
the aid of a discrete model of the body's boundary layer. The reasons why the latter conditions need to be
relaxed for beam and plate structural models are explained.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Strain gradient elasticity models of continuum mechanics are
recognized within thewide literature as material models capable to
capture and describe a number of experimentally detected micro-
structural phenomena featured by an internal length scale, such as
size effects, surface effects, dispersion effects of wave propagation,
along with the possibility to dispense with stress/strain singular-
ities at, typically, crack tips and dislocation cores. Basically, the
strain gradient elasticity theory is founded on the idea that the
material response at a point depends not only on the local strain,
but also on the strain gradients of various order, up to a value
characterizing the non-simplicity grade of the material and the
expected extent of physics to be captured.

The early formulations of strain gradient elasticity go back to
Cauchy (1851) with his infinite series representation of an isotropic
material with a crystal periodic structure, and to Voigt (1887) with
his exhaustive treatment of kinematics and constitutive equations
for discrete lattice models, in which the molecular displacements
and rotations are considered. In the early 20th century the Cosserat
brothers (Cosserat and Cosserat, 1909) contributed to the devel-
opment of a generalized continuum theory equipped with an
enriched kinematics whereby the material particle is endowed
with both translational and rotational degrees of freedom. But all

this remained almost unnoticed until the early 1960s, when a sig-
nificant revival of gradient continuum theories occurred. The
reader is addressed to Mindlin (1972) and Askes and Aifantis (2011)
for further historical details on this issue. Here we only remind the
landmark papers by Toupin (1962, 1964); Kr€oner (1963, 1967);
Mindlin (1964, 1965); Mindlin and Eshel (1968); Green and Rivlin
(1964a, b). Meanwhile, in the early 1970s, Germain (1973a, b)
addressed the general equilibrium problem of first strain gradient
materials endowed with a microstructure and inherent extra de-
grees of freedom. Basing on the method of virtual power, general
guidelines were givenwhich happen to unify analogous procedures
emerging from the research work by Toupin (1962, 1964); Mindlin
(1964, 1965, 1972); Mindlin and Eshel (1968); Green and Rivlin
(1964a, b).

A second revival of gradient continuum theories took place in
the early 1980s due to the work by Eringen (1983), who reformu-
lated his earlier studies on nonlocal elasticity and devised amethod
whereby the original integral-type constitutive equations were
replaced with differential equations of the typical form.

ε ¼ C�1 :
�
s� [2Ds

�
(1)

where [ denotes an internal length scale parameter and C is the
usual moduli tensor of isotropic elasticity. The Eringen method,
although it did not provide any indications about the (higher order,
(h.o.)) boundary conditions that must be associated to the latter
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applications to problems of structural mechanics analysis within
micro- and nano-technologies (with the h.o. boundary conditions
being heuristically devised), see e.g. (Peddieson et al., 2003; Askes
and Guti�errez, 2006; Reddy, 2007; Reddy and Pang, 2008; Kumar
et al., 2008) and the literature therein, where some essential size-
dependent microstructual phenomena were described. Lazar
et al. (2006a) formulated a bi-Helmholtz elasticity theory based
on a second stress gradient model also derived by means of the
Eringen inversion procedure mentioned earlier. This model was
applied to an infinite domain for dislocation analysis problems
whereby no stress, nor strain, singularities were encountered.

In the early 1990s, Aifantis and his coworkers advanced a strain
gradient constitutive model of isotropic elasticity (Aifantis, 1992;
Altan and Aifantis, 1992; Ru and Aifantis, 1993), which may be
considered as a simplified version of a more general constitutive
model of strain gradient elasticity with microstructure by Mindlin
(1964). The number of independent material constants of the
latter Mindlin model reduces (from the huge value of 903 in the
most general case) to 18 (including the Lam�e constants) in the
simpler case of zero relative deformations of the microstructure,
and to only seven in the additional hypothesis of isotropy. In
contrast, the Aifantis model requires only three constants (i.e. the
Lam�e constants and an internal length scale parameter, say [)
incorporated within an attractive diffusion-type constitutive
equation as.

s ¼ C :
�
ε� [2Dε

�
(2)

The latter Aifantis model was employed to address a variety of
structural problems showing that no strain singularities do occur at
the crack tips and dislocation cores, and that dispersion effects in
wave propagation can be effectively captured; see Askes and
Aifantis (2011). However, as shown by Lazar and Maugin (2005),
singularities of double stresses (that is, stresses generated by
double forces (Polizzotto, 2013)) cannot be removed by means of
the mentioned model.

An extension of the above first strain gradient theory to a second
strain gradient one, characterized by four material constants (i.e.
the Lam�e constants and two length scale parameters), was
advanced by Polizzotto (2003) through a constitutive equation as

s ¼ C :
�
ε� [21Dεþ [42DDε

�
(3)

where [1 and [2 are length scale parameters. Lazar et al. (2006b)
proposed an analogous theory cast in the form of bi-Helmholtz
gradient theory and applied it to a series of dislocation problems
within an infinite domain with the notable result that no singu-
larities of any sort do arise correspondingly. The latter outcomewas
confirmed by further applications to defect interaction problems
(Zhang et al., 2006), dislocation analysis (Lazar and Maugin, 2006;
Lazar, 2013) and disclination analysis (Deng et al., 2007). However,
all these applications did not pay sufficient attention to the
boundary conditions, nor to the inherent surfaces effects.

Fried and Gurtin (2006) and Polizzotto (2012) provided a more
extensive study on the (static and dynamic) behavior of first strain
gradient elasticity models based on (2) with the additional
assumption of first velocity gradient inertia. Following the guide-
lines prompted by Toupin (1962, 1964) and Mindlin (1964, 1965);
Mindlin and Eshel (1968), the principle of virtual power was used
to establish the relevant boundary conditions along with the
notable boundary effects promoted by the gradient nature of the
material (as the formation of a boundary layer in local and global
equilibrium and the occurrence of surface inertia forces). An anal-
ogous study was undertaken by Polizzotto (2013) to address second

strain gradient elasticity models based on the constitutive equation
(3) under the assumption of second velocity gradient inertia. The
literature concerned with the dynamic behavior of both first and
second strain gradient elasticity models is extensive, see Askes and
Aifantis (2006, 2011) and the references cited, but only the static
features of the theory will be addressed in the following.

The mentioned Eringen method opened the way to a novel
autonomous continuum theory, namely, the stress gradient elasticity
theory, centered on the idea that the stress constitutes the driving
variable within the constitutive behavior of the material and that
thematerial response depends on the stress, as well as on the stress
gradients up to some order. However, for a period as long as about
thirty years after the work of Eringen (1983), models of stress
gradient elasticity were obtainable only through the mentioned
inversion procedure by Eringen, although discrete models were
also used for this purpose (Metrikine and Askes, 2006) and ho-
mogenization methods were employed for the derivation of
gradient and Cosserat elasticity models from microstructural
models (Forest et al., 2001; Polizzotto, 2013). The few contributions
to the formulation of such a theory are quite recent. Forest and Sab
(2012) first postulated the need of formulations independent of
integral ones and contributed to the construction of such a theory
by addressing micromorphic elastic solids. Polizzotto (2014) elab-
orated a thermodynamically consistent stress gradient theory and a
few related variational principles together with a stress gradient
formulation of the EulereBernoulli beam. We shall return to the
latter contributions in Section 2 with more specific comments.

A unification of the theory of Eringen with the one of Aifantis
may be achieved by means of a material model in which mixed
stress/strain gradient effects do take place. Such a model may
perhaps be constructed by combining the constitutive equations (1)
and (2) into a single one in the form.

s ¼ C : ℛ
�
ε� [2Dε

�
(4)

where ℛ denotes the integral operator typical of the Eringen
nonlocal continuum theories (Eringen, 1983, 2002). The constitu-
tive model (4) exhibits the property that the material is sensitive
not only to the strain and the strain gradient, but also to their
respective relative mean-weighted values within the inherent
domain. By the restriction that the kernel function of the integral
operator be the Green function pertaining to a differential operator
as Ls :¼ 1� [2sD, but [ss[, then the stress equation (4) may be
inverted to produce the mixed stress/strain gradient constitutive
equation advanced by Aifantis (2003), that is,

s� [2sDs ¼ C :
�
ε� [2Dε

�
(5)

Obviously, for [s ¼ 0 Eq. (5) coincides with the Aifantis strain
gradient model (2), whereas for [ ¼ 0 it coincides with the Eringen
stress gradient model (1). This mixed constitutive model has been
used to address a number of crack and dislocation problems
showing that both stress and strain singularities disappear (see
(Aifantis, 2003) and the references therein). However, in spite of
the appealing features of the latter mixed model, obtaining a
rigorous thermodynamically consistent formulation of it seems to
be a hard task; it will not further addressed in the present paper.

Let us also mention that a strain gradient elasticity model
(together with the inherent higher order boundary conditions) can
be derived from a nonlocal model by means of the principle of
virtual power in conjunction with suitable Taylor series expansion
techniques (Borino and Polizzotto, 2014). However, it has to be
noted that Eringen (1983) proposed his stress gradient elasticity
model as an alternative way to address nonlocal elasticity
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