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a b s t r a c t

Localisation of deformation is a problem in several manufacturing processes. Machining is an exception
where it is a wanted feature. However, it is always a problem in finite element modelling of these
processes due to mesh sensitivity of the computed results. The remedy is to incorporate a length scale
into the numerical formulations in order to achieve convergent solutions. Different simplifications in the
implementation of a non-local damage model are evaluated with respect to temporal and spatial dis-
cretisation to show the effect of different approximations on accuracy and convergence.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Integrated microstructure and constitutive models are used in
thermo-mechanical simulations of individual, e.g. (B€orjesson and
Lindgren, 2001; Svoboda et al., 2010) as well as chains of
manufacturing processes (Lindgren et al., 2011a,b; Tersing et al.,
2012). There are modelling challenges with respect to the mate-
rial behaviour as well as friction conditions inmany cases. However,
there are also numerical problems requiring special precautions.
The latter are mainly the need for handling extremely large
deformation as well as localised deformations. Both issues occur in
machining simulations (Svoboda et al., 2010). The focus of the
current study is on the localisation problem.

There are two basic approaches to reduce the extreme mesh
sensitivity when modelling localisation problems. In both cases, a
length scale is introduced that enables the convergence of the so-
lution by limiting the localisation of the deformation. This length
scale can have a connection to the physics of thematerial behaviour
but can also be seen as a numerical, regularisation parameter (Al-
Rub and Voyiadjis, 2004; Al-Rub and Voyiadjis, 2006; Bazant and
Jir�asek, 2002; Enakoutsa et al., 2007; Geers et al., 2003). The two
variants of including this length scale can be related either to non-
local formulations or higher order continuum theory. An example
of higher order continuum theory is the multiresolution continuum
theory (MRCT) introduced by W.K Liu and co-workers (Lindgren
et al., 2011a,b; Liu et al., 2009; McVeigh et al., 2006). It includes

the Cosserat continuum, polar and micromorphic formulations (de
Borst, 1991; Eringen and Suhubi, 1964; Forest and Sievert, 2006) as
special cases. The current focus is on a simplified non-local
formulation of damage models. The plastic behaviour is based on
a standard plasticity model. The damage evolution is coupled to the
plastic straining of the material.

The aim of the current work is to evaluate how different levels of
implementation simplifications affect accuracy and efficiency. This
is of particular concern when using implicit finite element formu-
lations where onewants to take as large time steps as possible. This
evaluation has been possible by using an in-house code. One point
is to investigate the effect on accuracy of the non-local damage
model by limiting use of non-local data relevant for a certain
integration point to the data at the beginning of an increment,
called an explicit non-local update (Cesar de Sa et al., 2010). This
data are readily available during the iterative incremental solution
of the finite element equations. It simplifies the implementation of
the model via user routines in commercial finite element codes as
well as reduces the nonlinearity in the solution process. The effects
of various approximations in the consistent tangent matrix on
convergence are also investigated in our paper. (Leblond et al.,
1994; Tvergaard and Needleman, 1995) used a simplified local
counterpart of the constitutive tangent matrix in their extension of
Gurson's plasticity model (Gurson, 1977). They found that they had
to take extremely small time steps. Neither did they include any
comparison with using the exact tangent operator or the effect of
longer time steps.

Furthermore, the non-local damage model is compared with a
local damage model in order to evaluate the mesh sensitivity. Nu-
merical results for tensile and shear deformations examples are
used for this evaluation.
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2. Non-local damage formulation

2.1. Coupled damage and plasticity

Ductile fracture is preceded by large-scale plastic yielding.
Simulation of ductile fracture requires models that account for the
simultaneous occurrence of plastic deformation coupled with
damage. The use of a continuum mechanics approach can be based
on the hypothesis strain equivalence (Simo and Ju, 1987) leading to
a definition of effective stress s as a transformation of the Cauchy
stress s as

s :¼ M�1 : s (1)

where M is a fourth-order tensor, which characterize the damage
state. The equation reduces to

s ¼ s

1� u
(2)

for isotropic damage. Usually the material is assumed to have failed
when it reaches a critical damage uc. Physically, the damage
parameteru can be interpreted as the ratio of damaged surface area
or volume over the total surface area or volume at a local material

point. The strain equivalence formulation model is combined with
the assumption that damage affects elasticity, plasticity or visco-
plasticity in the same way. This simplifies the modelling as all
deformation of a damaged material is represented in the consti-
tutive law of the virgin material by replacing the stress by effective
stress.

2.2. Constitutive model

The strain-based approach is used and the change in effective
Cauchy stress tensor s is calculated as

sV ¼ ð1� uÞCe : de (3)

where s is the Cauchy stress tensor, Ce is the elastic material fourth
order tensor, de is the elastic spatial velocity gradient and the right
superscript V denotes any objective stress rate. The effective stress
used in the plasticity calculations is given by Equation (2). It is the
used in the yield criterion

F ¼ se � sy (4)

Table 1
Investigation of effect of q in Equation (15) for damage.

Length of
time step
[secs]

Average
strain
incrementa

Peak force [kN] Maximum 3
p
e

before failure
Maximum
u before
failure

q ¼ 0 q ¼ 1 q ¼ 0 q ¼ 1 q ¼ 0 q ¼ 1

1 0.085 8.87 8.77 0.07 0.07 0.09 0.10
0.5 0.021 8.77 8.67 0.08 0.10 0.15 0.21
0.25 0.005 8.68 8.61 0.11 0.10 0.26 0.21
0.125 0.001 8.61 8.58 0.11 0.10 0.24 0.22
0.0625 3.33e-4 8.58 8.55 0.10 0.10 0.22 0.21
0.03125 8.322-5 8.55 8.54 0.10 0.10 0.23 0.22
0.015625 2.08e-5 8.54 8.53 0.10 0.10 0.21 0.21
0.5-> 0.05 2.13e-4 8.58 8.55 0.10 0.10 0.22 0.22

a This is based on length of time steps combinedwith Equation (29) and assuming
homogeneous deformation.

Table 2
Investigation of discretisation effect of using variable time stepping 0.5e0.05 secs.

Type of model Peak
force [kN]

Width of
damage banda

Maximum 3
p
e

before failure
Maximum u

before failure

20�80 local model 8.66 0.90 mm 0.18 0.46
20�80 explicit

non-local update
8.67 2.10 mm 0.12 0.14

40�160 local 8.60 0.50 mm 0.22 0.51
40�160 explicit

non-local update
8.56 1.90 mm 0.13 0.13

a Defined as region with effective plastic strain above 0.08.

Fig. 1. The most coarse finite element mesh used in the tensile necking simulations. It consists of 5 rows and 20 columns of four node elements, denoted 5 � 20 in the text. A quarter
of the specimen is modelled. Symmetry conditions are applied to the left (x ¼ 0) and bottom (y ¼ 0). The centre of the specimen is made 1.8% thinner.

Fig. 2. The most coarse finite element mesh used in the shear simulations. It consists
of 12 rows and 10 columns of four node elements, denoted 12x10 in the text. A quarter
of the specimen is modelled. Symmetry conditions are applied to the left (x ¼ 0) and
bottom (y ¼ 0). The centre of the specimen is made 2% thinner.
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