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HIGHLIGHTS

o A modified equivalent circuit model is presented.

o A linear-averaging method is presented to compute correction factors.

o The UKEF algorithm for SOC estimation based on the presented model is introduced.
o Performance of the proposed method is verified by comparison results.
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Accurate estimation for the state of charge (SOC) is one of the most important aspects of a battery
management system (BMS) in electric vehicles (EVs) as it provides drivers with the EVs' remaining range.
However, it is difficult to get an accurate SOC, because its value cannot be directly measured and is
affected by various factors, such as the operating temperature, current rate and cycle number. In this
paper, a modified equivalent circuit model is presented to include the impact of different current rates
and SOCs on the battery internal resistance, and the impact of different temperatures and current rates
on the battery capacity. Besides, a linear—averaging method is presented to calculate the internal
resistance and practical capacity correction factors according to data collected from the experimental
bench and saved as look-up tables. The unscented Kalman filter (UKF) algorithm is then introduced to
estimate the SOC according to the presented model. Experiments based on actual urban driving cycles
are carried out to evaluate the performance of the presented method by comparing with two existed
methods. Experimental results show that the proposed method can reduce the computation cost and
improve the SOC estimation accuracy simultaneously.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the soaring energy crisis and environmental pollution,
electric vehicles (EVs) have gained increased attention in recent
years. Many industrialized nations have declared their plans for EVs
development and production. For example, the US government has
planned to have one million EVs on the road by 2015, and the
Chinese government has set a goal of owning five million EVs by
2020 [1]. Power battery plays an important role in EVs, just like the
oil does in the internal combustion engine vehicles (ICEVs).
Comparing with other batteries, such as the lead-acid, nickel-
—cadmium and NiMH batteries, lithium-ion battery (LIB) has
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merits in high voltage, high energy and power density, no memory
effect, low self-discharge rate and long cycle life, so it has been
widely used in EVs [2]. In the EVs application, accurate state of
charge (SOC) estimation for LIB is essential to ease the “range
anxiety” [1], realize the reasonable energy management and effi-
cient utilization of the battery. Besides, it prevents the battery from
over-charging or over-discharging that leads serious damage to the
battery.

Previously, various methods for SOC estimation have been
proposed. A common method is the Ampere-hour (Ah) counting
method [3—5], in which the residual charge is calculated by inte-
grating the current over time. The Ah method only needs to mea-
sure the battery current, so it is simple and can be easily
implemented on-board. However, it requires accurate knowledge
of the initial SOC value and suffers accumulated error from the
integration process due to current drift. The open-circuit voltage
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(0OCV) [6,7] is another common method, which estimates the SOC
based on the relationship between the OCV and the SOC. Never-
theless, it is not suitable for online estimation due to the long rest
time to reach the battery's steady-state. Computational intelligence
algorithms, such as the artificial neural networks (ANNs) [8—10],
fuzzy-logic [11—13], and support vector machines (SVMs) [14—16]
have also been developed to estimate the SOC. These methods do
not require detailed knowledge of battery systems. Thus, they can
be applied to all battery types and have excellent estimation per-
formance if the training data are sufficient to cover the whole
loading conditions. However, collecting training data that cover all
of the loading conditions is time consuming and nearly impossible.
Besides, all the aforementioned methods are open-loop estimation
algorithms and do not require the battery model.

More recently, efforts have been focused on model-based and
closed-loop estimation methods, among which the most famous
two methods are the sliding mode observer (SMO) [17,18] and
Kalman filter (KF) [1,19—26]. In these two methods, a battery is
regarded as a power system and can be described by various
models. They have high real-time and precise performance which
strongly depends on the model accuracy related to its complexity.

A number of battery models have been proposed, such as the
first principle models, black box models and equivalent circuit
models (ECMs) [27]. Among them, the ECMs are widely used due to
their advantages in simulating the dynamic behaviors of LIB
[28,29]. Furthermore, LIB parameters, such as the practical capacity,
internal resistance are related to operating temperature, current
rate and cycle number. Therefore, corrections on battery parame-
ters have been reported to improve the SOC estimation accuracy. In
Ref. [1], the internal resistance was estimated online to improve the
model accuracy. However, it increases the computation cost. In
Ref. [29] and Ref. [30], variations of model parameters (e.g., the
ohmic resistance, electrochemical polarization resistance and
capacitance, concentration polarization resistance and capacitance)
with the SOC have been discussed. However, the variations of
battery capacity with temperature, current rate and cycle number
are neglected. In Ref. [31], a cycle life model was developed to
predict the battery capacity degradation with the increase of cycle,
but the variations of battery capacity with the temperature and
current rate, and the variations of internal resistance with the
temperature, current rate and SOC are ignored. In Ref. [32], an
enhanced battery model was presented to include the impact of
different discharge rates and temperatures on the battery capacity.
Unfortunately, it compensates the impact of different factors on
battery capacity separately. Besides, the ohmic resistance is regar-
ded as a state-variable in this method, leading to the increase of
computation cost.

In this paper, a modified equivalent circuit model is presented. An
offset voltage is employed to compensate the model error based on
the fact that a small bias exists between the estimated OCV and the
measured OCV [1]. To further improve the model accuracy, a com-
bined resistance correction factor that simultaneously describes the
variations of battery internal resistance with the current rate and
SOC, as well as a combined capacity correction factor that simulta-
neously indicates the variations of battery capacity with the tem-
perature and current rate are introduced. A linear-averaging method
is proposed to calculate the values of the correction factors according
to data collected from the experimental bench and saved as look-up
tables. Comparing with the methods proposed in Ref. [1] and
Ref. [32], the presented method compensates the impact of different
temperatures and current rates on battery capacity simultaneously,
so it is more accurate. Besides, the presented method compensates
the impact of different current rates and SOCs on battery internal
resistance with the look-up table method rather than the online
estimation method, so it reduces the computation cost.

The following sections of this paper are organized as follows:
Section 2 presents a modified simple equivalent circuit model and a
linear-averaging method used to calculate the internal resistance
and practical capacity correction factors. Section 3 introduces the
UKF-based SOC estimation method with the presented battery
model. Section 4 describes the experimental setup. Section 5 pre-
sents the experimental results and discussion, and Section 6 makes
conclusions of the paper.

2. Battery modeling
2.1. Battery equivalent circuit model

The equivalent circuit models, consisting of resistors, capacitors
and inductors, perform well in describing the battery dynamic
characteristics, so they are usually used in SOC estimation [2,24,29].
A complicated model is able to accurately capture the characteris-
tics of a battery, but it increases the computation cost which is not
suitable for an on-board estimator [24]. On the contrary, a simple
model can reduce the computation cost, but it may not be accurate
enough to describe the LIB characteristics.

In this paper, a modified simple equivalent circuit model shown
in Fig. 1 is presented to reduce the computation cost and improve
the model accuracy. In this model, variable R represents the internal
resistance at different current rates and SOCs, which can be
calculated by a simple linear-averaging method (introduced in
Section 2.3) according to the two-dimension R,—I—SOC look-up
table; OCV stands for the open circuit voltage (OCV), which is a
nonlinear function of SOC; and V. is introduced as an offset voltage
based on the fact that a small bias exists between the estimated
OCV and the measured OCV [1].

Based on Fig. 1, the discrete state-space equations can be derived

as:
V(k) = OCV[SOC(k)] — I(k) x R(k) — V¢ @)

where 4T is the sample period, and Q, represents the battery
nominal capacity.

2.2. Model parameters estimation

In the presented equivalent circuit model shown Fig. 1, the pa-
rameters, including R, V. and the OCV—SOC relationship need to be
determined. In this paper, the battery's discharging internal resis-
tance was tested as the following process:

i) Charge the battery to its cut-off voltage with the standard
charging method at the temperature of 25 °C;
ii) Rest the battery for 1 h;

) ocvisoc) v

Fig. 1. Modified battery equivalent circuit model.
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