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h i g h l i g h t s

� The state of energy (SOE) is introduced to replace the SOC to determine the residual energy of the battery.
� The energy loss on the internal resistance, electrochemical reactions and decrease of OCV is considered in SOE estimation.
� Temperature and current influence are considered to improve the robustness of SOE estimation.
� The proposed BPNN method is validated under dynamic temperature and current conditions.
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a b s t r a c t

The state of energy (SOE) of Li-ion batteries is a critical index for energy optimization and management.
In the applied battery system, the fact that the discharge current and the temperature change due to the
dynamic load will result in errors in the estimation of the residual energy for the battery. To address this
issue, a new method based on the Back-Propagation Neural Network (BPNN) is presented for the SOE
estimation. In the proposed approach, in order to take into account the energy loss on the internal
resistance, the electrochemical reactions and the decrease of the open-circuit voltage (OCV), the SOE is
introduced to replace the state of charge (SOC) to describe the residual energy of the battery. Addi-
tionally, the discharge current and temperature are taken as the training inputs of the BPNN to overcome
their interference on the SOE estimation. The simulation experiments on LiFePO4 batteries indicate that
the proposed method based on the BPNN can estimate the SOE much more reliably and accurately.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the improvement of the energy density and the safety
performance, Li-ion batteries are widely used in the renewable
energy vehicles and energy storage systems, such as electric vehi-
cles, wind power systems, solar power systems, micro-grid and so
on. The SOE of the battery [1], which provides the essential basis of
energy deployment, load balancing, and security of electricity for
the complex energy systems, is a key parameter in the battery
system.

Traditionally, the residual energy of the battery is represented
by the estimation of the SOC. In recent years, many studies on the
SOC estimation can be found in the literature, with the primary
methods being the current integralmethod [2], the electrical model
basedmethod [3e7] and the neural networkmodel method [8e10].

The current integral method obtains the SOC estimation through
the accumulation of the battery current [2]. The method is easy to
implement; however it is an open-loop estimation so that its
estimation accuracy becomes poor due to the accumulated error
caused by the current measurement noise [7]. As to the electrical
model based method, both electrochemical models and equivalent
circuit models are established to capture the relationship between
the SOC and the OCV of the battery. Then, the Kalman filter
methods or the particle filter methods are applied for the SOC
estimation based on these battery models. The Kalman filter and
particle filter methods are closed-loop, and many algorithms such
as extended Kalman filter [5,6,11], unscented Kalman filter [12,13]
and unscented particle filter [3,5] are used in the SOC estimation.
These methods take the SOC as a state variable, so they can solve
the accumulated error of the current integral method by updating
the SOC on the basis of the difference between the measured and
the prediction value of the terminal voltage. The neural network
model methods can describe the dynamic and nonlinear behavior
of the battery bymeans of the multilayer neural networks, and thus
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it could be used to estimate the SOC for Li-ion batteries [8e10].
Some works develop the data-fusion method [14] and the discrete
Wavelet method [15,16] for SOC estimation. These approaches have
been widely used in the SOC estimation of Li-ion batteries, and
most of them have achieved acceptable results.

Nevertheless, with the increasingly widespread application of
Li-ion batteries, the functional demand of battery management
system appears a more sophisticated and complex trend. Therefore,
the disadvantages of using the estimated SOC to represent the
battery residual energy become more prominent. Firstly, the SOE is
different from the SOC for Li-ion batteries. The SOC defines the ratio
of the residual active material to the total original active material
inside a Li-ion battery. In this sense, the SOC indicates only the
capacity state rather than the energy state on which the battery
application conditions is dependent. For a more detailed manage-
ment of the battery, the discharge efficiency and the residual en-
ergy are necessary. There are no more energy information can be
got from the estimated SOC since the SOC is only a percentage of
the battery capacity. Some works have considered the residual
available capacity instead of the SOC to determine the residual
energy of the battery [17e20]. Secondly, although there is a positive
correlation between the SOE and the SOC, they have no explicit
quantitative relationship. The SOC decreases linearly with the
discharge current, but the battery energy is the product of the ca-
pacity and the OCV of the battery. There are differences between
the SOC and the SOE because the energy loss on the internal
resistance, the electrochemical reactions and the decrease of the
OCV are not considered in the SOC estimation [3e5,21e24]. Thirdly,
in the actual battery system, where the discharge current and the
temperature usually changes dramatically due to the dynamic load,
the performance of the battery becomes poor [25e27]. For SOC
estimation, the temperature effect has been considered to build a
more accurate battery model [13,28,29]. Xing et al. [28] develop an
offline OCVeSOC-temperature table to describe the temperature
effect, and pattern recognition based on the Hamming network is
presented to check the temperature [29]. However, as to the rela-
tion between the SOE and the temperature, it is not adequately
addressed in the recent literature. At the same SOC, the SOE may
change on account of the fact that the discharge efficiency is
dependent on the discharge current and temperature. Thus, it is
necessary to carry on a more comprehensive analysis on the effect
of the discharge current and temperature for getting a more ac-
curate SOE estimation.

In this paper, to determine the energy loss on the internal
resistance, the electrochemical reactions and the decrease of the
OCV, the SOE instead of the SOC is introduced to represent the
residual energy of Li-ion batteries, and a BPNNmethod is proposed
to improve the SOE estimation at dynamic currents and tempera-
tures. In Section 2, we give a clear definition of the SOE for Li-ion
batteries. Battery tests with various currents at different tempera-
tures are carried out to analyze their effect on the SOE in Section 3.
In Section 4, a BPNN battery model is established to take into ac-
count the effect of the OCV, discharge current and temperature.
And then, parameters of the BPNN battery model are identified by
the experimental data of LiFePO4 batteries. In Section 5, simulations
based on the BPNN algorithm are used to verify the accuracy of the
estimation of the battery SOE.

2. SOE

The SOE provides the information of the remaining available
energy of Li-ion batteries [30,31], so it is a critical parameter for
energy optimization and management for the battery system. In
this paper, the SOE is defined as:

SOE tð Þ ¼ Ec � Ed tð Þ (1)

where SOE(t) is the remaining energy of the battery at time t, Ec is
the total energy of the battery and Ed (t) is the discharged energy of
the battery until time t. Generally, the SOE reaches its maximum
after it is fully charged, and the SOE is zero when the battery is
discharged to its low cutoff voltage.

The study of Li-ion batteries indicates that the energy, which is
consumed during the discharge process, is mainly composed of the
output electric energy, the energy consumed on the internal
resistance heating and the energy consumed on the electro-
chemical reactions. The output electric energy is used to meet the
load, and it is usually expressed by the SOC in previous studies. The
internal resistance will heat the battery during the discharge pro-
cess, so it expends the battery energy. The electrochemical re-
actions inside the battery also cause the energy consumption.

The available energy of Li-ion batteries changes with the battery
temperature. Specifically, the available energy decreases signifi-
cantly at low temperatures. Under high discharge currents, a Li-ion
battery may demonstrate empty conditions via the low cutoff
voltage. However, the battery still has energy that may be utilized
at lower discharge currents. This characteristic can bring great
difficulties to the estimation accuracy of the SOE.

3. Experiments

3.1. Test bench

In order to acquire experimental data of Li-ion batteries, a test
bench is built, as shown in Fig. 1. The test bench is composed of a
battery test system NEWARE BTS4000, a battery management
system (BMS), a CAN communication unit, a host computer for on-
line experiment control and a programmable temperature cham-
ber. The NEWWARE BTS4000 is used to load the battery with a
maximum voltage of 5 V and a maximum current of 100 A, and its
voltage and current measurement accuracy is ±0.1%. The experi-
mental data such as current, voltage, temperature, accumulative
ampere-hours (Ah) and Watt-hours (Wh) are measured by the
NEWWARE BTS4000 and recorded by the host computer. The BMS
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Fig. 1. Configuration of the battery test bench.
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