FISEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Short communication

Low-cost method for sodium borohydride regeneration and the energy efficiency of its hydrolysis and regeneration process

L.Z. Ouyang ^{a, b, c}, H. Zhong ^{a, b}, Z.M. Li ^{a, b}, Z.J. Cao ^{a, b}, H. Wang ^{a, b}, J.W. Liu ^{a, b}, X.K. Zhu ^{a, b}, M. Zhu ^{a, b, *}

- ^a School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- b Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, People's Republic of China
- Key Laboratory for Fuel Cell Technology in Guangdong Province, South China University of Technology, Guangzhou 510641, People's Republic of China

HIGHLIGHTS

- The regeneration process for NaBH₄ is designed using MgH₂ with NaBO₂.
- The energy efficiency of the hydrolysis and regeneration of NaBH₄ is 49.91%.
- A cheap method for NaBH₄ regeneration was developed by reacting H-Mg₃La with NaBO₂.
- The mechanism of NaBH₄ regeneration by reacting Mg₃La hydride with NaBO₂ is revealed.

ARTICLE INFO

Article history: Received 8 March 2014 Received in revised form 8 July 2014 Accepted 12 July 2014 Available online 18 July 2014

Keywords:
Sodium borohydride
Energy efficiency
Magnesium—lanthanum hydrides
Ball milling

ABSTRACT

Hydrolysis of sodium borohydride (NaBH₄) is one of the most attractive methods for energy generation of mobile systems used as hydrogen source because of the high gravimetric density and controllable hydrogen generation of NaBH₄. However, regeneration of NaBH₄ is a key issue that remains to be solved, and the energy efficiency of NaBH₄ is unknown. In the present study, the energy efficiency of NaBH₄ hydrolysis and the entire process of sodium metaborate (NaBO₂) regeneration via reaction with magnesium hydride (MgH₂) is determined through thermodynamics calculations. The maximum energy efficiency is 49.91%, indicating that NaBH₄ generation by reaction between MgH₂ and NaBO₂ during ball milling is feasible. An inexpensive high-energy ball milling method is employed to regenerate NaBH₄ by reaction of NaBO₂ with magnesium—lanthanum hydrides (H—Mg₃La). Products after ball milling are characterized through Fourier transform infrared spectroscopy and X-ray diffraction measurements. In the reaction of NaBO₂ with H—Mg₃La, MgH₂ reacts with NaBO₂ and then lanthanum hydride (LaH₃) reacts with NaBO₂ to produce NaBH₄.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Because of the world energy crisis, replacement of fossil fuel has become a key issue. In this regard, hydrogen energy is an important alternative source of energy [1]. Unlike oil or natural gas, however, hydrogen is an energy carrier rather than a source of energy [2]. Appropriate methods for hydrogen generation and storage must therefore be developed to utilize it [3]. Hydrolysis is one of the most attractive methods of hydrogen generation because it obviates

storage and produces a large amount of hydrogen. Among the hydrogen complexes that produce hydrogen by hydrolysis and function as storage material for hydrogen, sodium borohydride (NaBH₄) has been extensively studied. It has been utilized in hydrogen supply systems of fuel cells [4,5]. The nonhazardous characteristic and high gravimetric density (10.8wt%) [3] of NaBH₄ favor the use of this complex in hydrogen production. NaBH₄ hydrolyzes according to the following process:

$$NaBH_4 + 2H_2O \rightarrow NaBO_2 + 4H_2$$
 $\Delta H = -75 \text{ kJ mol}^{-1} H_2$ (1)

This highly controllable reaction generates pure hydrogen. Thus, it can be directly used in fuel cells [3,6]. The byproduct of this reaction, sodium metaborate (NaBO₂), is environmentally friendly

^{*} Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China. E-mail address: memzhu@scut.edu.cn (M. Zhu).

and nontoxic. As NaBH₄ hydrolysis is irreversible, a key issue is discovering a means to convert NaBO₂ back to NaBH₄ [7]. For example, the less-expensive reducing metal, magnesium (or its hydride), has been used to produce NaBH₄ from dehydrated NaBO₂. Work on this approach was largely conducted by Kojima et al. [8]. They synthesized NaBH₄ by heating a mixture of dehydrated NaBO₂ and MgH₂ or a mixture of NaBO₂ and Mg under high H₂ pressure and elevated temperature. This synthesis proceeds through reactions described in Equations (2) and (3).

$$NaBO_2 + 2MgH_2 \rightarrow NaBH_4 + 2MgO$$
 (2)

$$NaBO_2 + 2Mg + 2H_2 \rightarrow NaBH_4 + 2MgO$$
 (3)

Other researchers further studied processes for converting NaBO₂ back to NaBH₄ through the above reaction [10,11]. Kojima et al. [8] synthesized NaBH₄ by heating dehydrated NaBO₂ and magnesium silicide (Mg₂Si) under high H₂ pressure at elevated temperature. However, energy consumption of such processes is very high. To achieve a new, economical route of NaBH₄ synthesis, Hsueh et al. [7], Çetin et al. [9], and Kong et al. [6] ball-milled dehydrated NaBO₂ and MgH₂ at room temperature. The yield of this process is 76%.

The U.S. Department of Energy advises against the use of NaBH₄ in on-board automotive hydrogen storage. One of the main reasons behind this advisory is the cost of NaBH4 and the irreversible process of its hydrolysis [12]. We thus examined the energy efficiency and heat effect of the entire process of NaBH₄ recycling to determine the feasibility of hydrogen generation by NaBH₄ hydrolysis. NaBO₂ and MgH₂ were used to synthesize NaBH₄ by ball milling, and the energy efficiency of the entire recycling process was determined through thermodynamic calculations. The energy consumption of the regeneration procedure was discussed in accordance with the calculations. To reduce the cost and temperature of NaBH₄ synthesis, we reacted MgH₂ and lanthanum hydride (LaH₃) mixtures produced by hydrogenating magnesium-lanthanum alloy (Mg₃La) [13-15] with NaBO₂ by ball milling at room temperature. Our process avoids the use of MgH₂, which is synthesized by hydrogenation at a high temperature; it is thus an alternative route for the regeneration of NaBH₄ for industrial use.

2. Experimental

2.1. Sample preparation

MgH $_2$ powder (98% purity) was purchased from Alfa Aesar (USA). Mg $_3$ La was prepared by induction melting of Mg (99.9%) and lanthanum (99.9%) in an alumina crucible under an argon atmosphere. The alloys were milled for 0.5 h in a QM-2SP planetary ball mill at a ball-to-powder mass ratio of 20:1. The NaBO $_2$ powder was dried at 280 °C to obtain anhydrous NaBO $_2$. To prevent samples and raw materials from oxidation and/or hydroxide formation, they were stored and handled in an Ar-filled glove box equipped with a recirculation system.

2.2. Synthesis of NaBH₄

Hydrogenation of Mg₃La was performed for 0.5 h at room temperature. MgH₂–NaBO₂ mixtures (2:1 mole ratio) and magnesium hydride—lanthanum hydride (3MgH₂–LaH₃)–NaBO₂ mixtures (4.4:9 mole ratio) were prepared. The mixtures were processed in a high-speed vibrating mill (QM-3C) using two sizes of balls.

2.3. Purification of NaBH₄

Purification of NaBH₄ was accomplished by extracting NaBH₄ with anhydrous ethylenediamine (99% purity) from the products after milling and then separating the extracted solution from the byproducts and remaining reactants through a polytetrafluoroethylene filter. The filtrate was dried in a vacuum oven at 50 °C to obtain NaBH₄.

2.4. Sample characterization

H–Mg₃La, as well as products after reaction and after purification were characterized by using a Philips X'Pert MPD X-ray diffractometer with Cu Kα radiation. Patterns in the 2θ range of $10^{\circ}-90^{\circ}$ were recorded at a scanning rate of 0.02° s $^{-1}$. The reaction products were analyzed by Fourier transformed infrared (FT-IR) spectroscopy (Bruker Vector 33).

3. Results and discussion

3.1. Regeneration of NaBH₄ using NaBO₂ and MgH₂

To obtain a cyclical process with NaBH₄ hydrolysis and regeneration for hydrogen generation, NaBH4 was regenerated by using NaBO₂ and MgH₂. Fig. 1 presents X-ray diffraction (XRD) patterns of the products after ball milling for different durations. Peaks of the XRD pattern of the product after 0.5 h of ball milling (Fig. 1(a)) could be indexed to MgH₂, NaBH₄ [16], and MgO. According to the phase analysis mentioned above, NaBH₄ and the by-product MgO were produced after 0.5 h of ball milling. Peaks of the XRD pattern of the product after 2 h of ball milling (Fig. 1(c)) could be indexed to NaBH₄ and MgO. In contrast to the XRD patterns in Fig. 1(a) and (b), the pattern in Fig. 1(c) does not have diffraction peaks of MgH₂. Stronger diffraction peaks of NaBH₄ in Fig. 1(c) compared with peaks in Fig. 1(d) suggest that part of the MgH₂ phase reacted with NaBO₂ and part of it became refined. Peaks of the XRD pattern of the product after 4 h of ball milling (Fig. 1(e)) could be indexed to NaBH₄ and MgO. The energy input for the vibrating mill used in this process of NaBH₄ regeneration was omitted in the subsequent calculation.

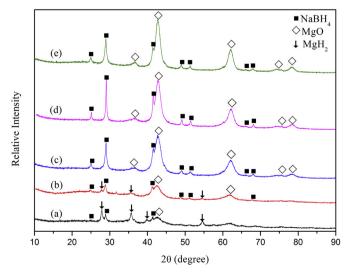


Fig. 1. XRD patterns of the powders produced after shaker milling the MgH₂-NaBO₂ mixture (in 2:1 mol ratio) for different durations (a) 30 min (b) 1 h (c) 2 h (d)3 h (e) 4 h.

Download English Version:

https://daneshyari.com/en/article/7736162

Download Persian Version:

https://daneshyari.com/article/7736162

<u>Daneshyari.com</u>