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a b s t r a c t

A generalized two-dimensional deformation of an anisotropic elastic solid is considered. The
transformed function method is employed to remove the breakdown limitation of the Stroh
formalism for a degenerate anisotropic solid with multiple characteristic roots. The anisotropic
elastic formalism for a general solution of elastic fields does not breakdown, and the closed form
expressions of elastic fields for the degenerate anisotropic materials are obtained. A general solution
of the thermoelastic fields in an anisotropic material under steady-state heat conduction is also
derived. The thermoelastic formalism is shown to be valid for an anisotropic solid with distinct
thermoelastic characteristic roots and a degenerate anisotropic solid with multiple thermoelastic
characteristic roots.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Two-dimensional problems in elasticity and thermoelasticity
have received much attention due to their potential applications. In
analyzing theoretically these two-dimensional problems, complex
variable techniques have been widely used. Muskhelishvili (1953)
developed a basic formulation for elastic fields in an isotropic
solid under plane deformation based on the complex variable
technique. Eshelby et al. (1953) and Lekhnitskii (1963) derived, in
entirely different ways, a general solution for elastic fields of an
anisotropic material in terms of analytic functions. Following
Eshelby et al. (1953), Stroh (1958) established an anisotropic elastic
formalism for a general elastic solution in anisotropic elasticity,
which is referred to as the Stroh formalism. However, the Stroh and
Lekhnitskii formalisms breakdown when the anisotropic material
degenerates with multiple characteristic roots. Beom et al. (2012)
introduced new transformed functions to remove the limitation
of breakdown for an orthotropic material. They showed that the
orthotropic elastic formalism based on the transformed function
method recovers the classical solutions for isotropic material and
degenerate orthotropic material. On the other hand, some progress
for the formulations of complex function representations for ther-
moelastic fields in anisotropic thermoelasticity has been made.
Bogdanoff (1954) and Clements (1973) derived basic formulations

for thermoelastic fields in isotropic and anisotropic solids, respec-
tively. Hwu (1990) obtained general representations for thermo-
elastic fields in anisotropic thermoelasticity based on the Stroh and
Lekhnitskii formalisms. His formalism is not valid for a degenerate
anisotropic material with multiple thermoelastic characteristic
roots. Recently, Beom (2013) modified the anisotropic thermo-
elastic formalism for the in-plane problem, which does not break-
down for a degenerate anisotropic solid. The breakdown limitation
in the anisotropic thermoelastic formalism for degenerate aniso-
tropic thermoelastic material in the more general case of general-
ized two-dimensional deformation has not yet been resolved
explicitly.

The purpose of this study is to investigate an elastic formalism
for a general solution of elastic fields in an anisotropic elastic solid.
Generalized two-dimensional deformations of the anisotropic
elastic solid under plane stress and plane strain conditions were
considered. The transformed function method was employed to
overcome the limitation of breakdown for the degenerate aniso-
tropic material in the Stroh formalism. The modified elastic
formalism for anisotropic material was verified not to breakdown
for the degenerate anisotropic material. Based on the modified
elastic formalism, the dependence of stresses on anisotropic elastic
constants is discussed. A general solution of thermoelastic fields in
anisotropic thermoelastic material under steady state heat con-
duction was also derived. The thermoelastic formalism is valid in
the sense of the limit for thermoelastic material with multiple
elastic characteristic roots, and an anisotropic thermoelastic solid
with distinct thermoelastic characteristic roots. Closed form
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expressions describing thermoelastic fields for the degenerate
anisotropic material were obtained.

2. Transformed function method for anisotropic elasticity

Consider a generalized two-dimensional deformation of an
anisotropic elastic solid. The three components of displacement
depend only on the in-plane coordinates x1 and x2. The constitutive
equation of a generally anisotropic material can be written in the
following compact form (Lekhnitskii, 1963):

εi ¼
X6
j¼1

Sijsj; ði ¼ 1;2;3;4;5;6Þ (1)

in which Sij is the conventional compliance, and {εi} ¼ [ε11 ε22 ε33
2ε23 2ε31 2ε12]T and fsjg ¼ ½s11 s22 s33 s23 s31 s12�T where εij and
sij are the strain and stress, respectively. The superscript T indicates
the transpose. According to Eshelby et al. (1953), Stroh (1958), and
Lekhnitskii (1963), a general solution of two-dimensional elastic
fields that satisfies the equilibrium equation can be written in the
following forms:

ui ¼ 2Re

" P3
j¼1

Aijfj
�
zj
�#

;

si ¼ �2Re

" P3
j¼1

Bijfj
�
zj
�#

s1i ¼ �2Re

" P3
j¼1

Bijpjf 0j
�
zj
�#

;

s2i ¼ 2Re

" P3
j¼1

Bijf 0j
�
zj
�# ði ¼ 1;2;3Þ:

(2)

Here, ui and si are the displacement and resultant force, respec-
tively. Re denotes the real part and prime (0) designates the deriv-
ative with respect to the associate argument. fjðzÞ (j ¼ 1, 2, 3) are
complex functions, and zj ¼ x1 þ pjx2 where pj (j ¼ 1, 2, 3) are the
roots with a positive imaginary part that satisfy the following
characteristic equation for plane stress deformation

N
�
pj
�

¼ 0 ðj ¼ 1;2;3Þ (3)

where

NðpÞ ¼ [2ðpÞ[4ðpÞ � ½[3ðpÞ�2; (4)

[2ðpÞ ¼ S55p2 � 2S45pþ S44;

[3ðpÞ ¼ S15p3 � ðS14 þ S56Þp2 þ ðS25 þ S46Þp� S24;

[4ðpÞ ¼ S11p4 � 2S16p3 þ ð2S12 þ S66Þp2 � 2S26pþ S22:

(5)

The matrices A and B for anisotropic material under plane stress
deformation are given by Stroh (1958) and Suo (1990)

Aij ¼ Ai

�
pj
�
;

Ai3 ¼ A*
i ðp3Þ; ði ¼ 1;2;3; j ¼ 1;2Þ;

(6)

B ¼
24�p1 �p2 �x3p3

1 1 x3
�h1 �h2 �1

35; (7)

where

A1ðpÞ ¼ S11p2 þ S12 � S16pþ hðpÞðS15p� S14Þ;

A2ðpÞ ¼ S21pþ S22
p

� S26 þ hðpÞ
h
S25 �

S24
p

i
;

A3ðpÞ ¼ S41pþ S42
p

� S46 þ hðpÞ
h
S45 �

S44
p

i
;

(8)

A*
1ðpÞ ¼ xðpÞ�S11p2 þ S12 � S16p

�þ S15p� S14;

A*
2ðpÞ ¼ xðpÞ

h
S21pþ S22

p
� S26

i
þ S25 �

S24
p

;

A*
3ðpÞ ¼ xðpÞ

h
S41pþ S42

p
� S46

i
þ S45 �

S44
p

;

(9)

xðpÞ ¼ �[3ðpÞ
[4ðpÞ

;

hðpÞ ¼ �[3ðpÞ
[2ðpÞ

;

(10)

x3 ¼ xðp3Þ;
hj ¼ h

�
pj
� ðj ¼ 1;2Þ; (11)

The basic formalism given by Eq. (2) is referred to as the Stroh
formalism or the LES representation (Lekhnitskii, 1963; Eshelby
et al., 1953; Stroh, 1958). We consider here an anisotropic solid
under plane stress deformation. For plane strain deformation, Sij is
replaced with Seij, which is defined as

Seij ¼ Sij �
Si3Sj3
S33

: (12)

The Stroh formalism given by Eq. (2) applies only to anisotropic
material with distinct characteristic roots pj (j ¼ 1, 2, 3). When the
anisotropic material degenerates to have multiple characteristic
roots, the Stroh formalism breaks down. The limits of matrices A
and B for the multiple characteristic roots exist even though their
determinants vanish. The Stroh formalism, however, is not reduced
to a classical solution for degenerate anisotropic material with
multiple characteristic roots. This implies that fjðzÞ (j ¼ 1, 2, 3) for
the degenerate anisotropic material does not exist. Therefore, a
modification of the Stroh formalism is needed for a degenerate
anisotropic solid. Recently, Beom et al. (2012) introduced new
transformed functions to overcome the limitation of breakdown for
an orthotropic material, which is referred to as the transformed
functionmethod. Their method obtains a modified Stroh formalism
for anisotropic material under generalized two-dimensional
deformation. We define transformed functions giðzÞ (i ¼ 1, 2, 3) as

giðzÞ ¼
X3
j¼1

BijfjðzÞ; (13)

in which z ¼ x1 þ px2, where p is a complex number with a posi-
tive imaginary part. We note from Eq. (13) that the functions fiðzÞ
(i ¼ 1, 2, 3) are written in terms of the functions gjðzÞ (j ¼ 1, 2, 3) as

fiðzÞ ¼
X3
j¼1

B�1
ij gjðzÞ; (14)

where

B�1 ¼ 1
D

2664
1� x3h2 p2 � x3h2p3 x3ðp2 � p3Þ
�1þ x3h1 �p1 þ x3h1p3 x3ðp3 � p1Þ
h2 � h1 h2p1 � h1p2 p1 � p2

3775; (15)
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