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a b s t r a c t

The phenomenon of Bauschinger effect and of other generally known deformation processess of metals is
explained and modeled on the mesoscale. The basic feature of the model consists in the use of tensorial
internal variables that have explicit physical meaning e internal mesomechanical stresses. The metallic
materials under consideration are modeled as two-phase media with two substructures, one compliant
and the other resistant. It is shown that Bauschinger effect and other deformation phenomena observed
in most metallic materials can be explained and described as results of interplays of these substructures.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

The attention paid to yield surfaces is very old, although in last
decades more attention is paid to fracture mechanics. In spite of it,
the importance of yield criteria remains. Achieving the elastic limit
given by a yield surface does not mean achieving the strength limit
of the respective element, but it can mean achieving the strength
limit of the construction, in which this element is embedded.
Therefore, it still holds that remaining in the elastic state the safest
policy for considering safety of constructions and the study of the
following plastic deformation is still an important topic.

The aim of the current study is not a mere description of the
experimentally observed phenomena related to yield surface
changes, but mainly discussionwhy these phenomena arise as they
do, and modeling the respective processes.

The most common and commonly used yield criterion is Mises‘
criterion (Von Mises, 1913). Its classical e somewhat cumbersome
e form reads:
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and is interpreted as a cylinder in a principal stresses coordinate
system that makes the same angle with the three principal axes.

With the use of Einstein’s notation, Hill (1950) suggested a more
elegant form of this criterion:
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where sij is the deviatoric part of the stress tensor sij,
(sij ¼ sij � dijs; s ¼ 1=3sii), dijs is its isotropic part, dij the Kro-
necker delta, k is a limit value in the case of sheer stress loading,
sy[s] is a limit value of principal stress s11 [of its deviatoric part s11]
in the case of uniaxial tensile loading. It is evident that this criterion
is independent of the isotropic part dijs of the stress tensor, called
sometimes hydrostatic pressure. Equation (2) can be interpreted as
a hyper-sphere, as it resembles the equation of a sphere written
with the use of Einstein’s notation (xixi � r2).

TheMises criterion (similarly as Tresca’s shear stress criterion) is
meant for isotropic materials. For anisotropic materials, Hill (1948,
1950) suggested e by mere analogy e the following form:

Fðs22 � s33Þ2 þ Gðs33 � s11Þ2 þ Hðs11 � s22Þ2 þ 2Ls223
þ 2Ms231 þ 2Ns212 ¼ 1

(3)

where F, G, H, L, M, N are constants to be determined experimen-
tally. It is straightforward to transform this equation to a form that
comprises only deviatoric components:
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Hence, this criterion is again independent of isotropic stress.
However, the criteria that are independent of isotropic stress are

not appropriate for all materials and a number of different
phenomenological approaches to the description of more compli-
cated forms of yield criteria have been suggested in the past
(Caddell et al., 1974; Kafka, 1987; Bigoni and Piccolroaz, 2004).

A topic closely related to yield surfaces is Bauschinger effect. The
interest in Bauschinger effect and yield criteria is quite old, but still
alive (Lin et al., 1972; Caddell et al., 1973; Hill, 1979, 1993; Zhu et al.,
1987; Chu, 1995; Deshpande et al., 2001; Alexandrov and Hwang,
2011; Francois, 2001; Liu et al., 2011; Vicente Alvarez, Bergant
and Perez, 2010; Yilamu et al., 2010; Wang and Jia, 2011; Zhu
et al., 2011; Bastun, 2012).

In the current study, we limit ourselves to Mises’ criterion (2)
and to the causality of its changes due to inelastic deformation:
Bauschinger effect, plastic deformation, creep, relaxation, yield-
point drop, serrated stressestrain diagram, Lüders’ bands and
necking. Our aim is first of all explanation and modeling the inner
process that leads to Bauschinger effect, a phenomenon known for
more than hundred years and observed in most metallic materials.
It seems meaningless to look for experimental results received for
one material and show that Bauschinger effect is valid for this one
material, as Bauschinger effect is valid generally. Our aim is
explanation and modeling of these generally known phenomena,
not comparison with experimental results found for special mate-
rials. It would be another concept to choose one specific material
and describe in detail all its properties.

Our approach uses tensorial internal variableswith clear physical
meaning, which are mesoscopic internal stresses. The first attempt
to explain Bauschinger effect by internal stresses was published by
Vasilev (1959), but was too superficial to receive much attention.

2. General model of the concept

Our analysis is based on the general concept of the first author
(Kafka, 2001), inwhich thematerial under discussion ismodeled as a

two-phasemedium, inwhich one phase is compliant (superscript c),
the other resistant (superscript r). In applications to polycrystalline
metals, the compliantphase corresponds to innerparts of grainswith
easy glide, the resistant phase to the rest of the material (impurities,
precipitates, dislocations, boundary regions of grains with irregular
atomic structure, etc.). In different materials and processes, the term
“compliant” canmeanplastic time-independent or rheological time-
dependent deformation. The term “resistant” canmean restriction to
elastic deformation, to elasticeplastic deformationwith higher yield
limit or of elastic-fracturing deformation. Apart from these qualita-
tive characteristics, everymaterial constituent is characterized by its
Young’s modulus, Poisson’s ratio, volume fraction, structural pa-
rameters, yield criterion or strength criterion. Debonding of the
material constituents is not taken into consideration;wedo not have
in mind composite materials, where this process can be important.

In ourworks, thismesoscalemodel has successfully been applied
first of all to metallic materials, but also to concrete, polymers and
biological tissues (Kafka, 1979a, 1979b, 1984, 1987, 2001, 2001a,
2008). Its basic set of equations reads:
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Nomenclature

General mechanics
sij stress tensor
dijs isotropic part of sij(s ¼ sii/3)
sij deviatoric part of sij(sij�dijs)
3ij strain tensor
dij 3 isotropic part of 3ij( 3¼ 3ii/3)
eij deviatoric part of 3ij( 3ij�dij 3)
dij Kronecker’s delta
E Young’s modulus
v Poisson’s ratio
m¼(1 þ v)/E deviatoric elastic compliance
r ¼ (1�2v)/E isotropic elastic compliance

Specific symbols
I overbar that relates symbol I to its macroscopic value

e average in the representative volume element (RVE)
Iu superscript u relates symbol I to the u- constituent e

average in the subvolume of RVE that is filled in by the
u- constituent

u ¼ c compliant constituent in the general two-phase model

u ¼ r resistant constituent in the general two-phase model
jij Einstein’s notation

30ij ¼ 3ij � 3ij
dij 30 isotropic part of 30ij
e0ij deviatoric part of 30ij
s0ij stress related to 30ij similarly as is sij related to 3ij

dijs
0 isotropic part of s0ij

s0ij deviatoric part of s0ij
vc[vr] volume fraction of the compliant [resistant]

constituent in the two-phase model
k[sy]{s} yield limit for: sheer stress loading [s11 in the case of

uniaxial tensile loading in the x1-direction] {s11 in the
case of uniaxial tensile loading in the x1-direction}

hu structural parameter (u ¼ c, r)
p vchc þ vrhr

q p þ hchr

_h
c

0 in the case of elasticity, [ ¼ dlc/dt in the case of
plasticity], { ¼ 1/2Hc in the case of rheological
deformation}

dlc increment of scalar measure of plastic deformation in
the compliant constituent

Hc coefficient of viscosity of the compliant constituent
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