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a b s t r a c t

There is the complex relationship between Poisson’s ratio and time in viscoelastic solids. Hence, using a
simple model to characterize accurately the viscoelastic Poisson’s ratio is important for the analysis of
viscoelastic behaviors. We put forward two deformation elements, fractional and spring deformation
element, and obtain three fractional deformation models through connecting the two deformation el-
ements in parallel or series. The functions of viscoelastic Poisson’s ratio are also derived for stress
relaxation and constant-longitudinal-strain loading. Further comparisons between tests and fitting re-
sults reveal that the fractional deformation models can represent reasonably the viscoelastic Poisson’s
ratio.

� 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Poisson’s ratio of viscoelastic materials may be defined in
several ways, and the most commonly used one is to consider it as
the ratio of time-dependent transverse to longitudinal strain in
axial extension or compression. Poisson’s ratio in linear viscoelas-
ticity is associated with time-dependent stress and deformation
and is one of the key factors of determining numerical simulation
accuracy. For example, stress in the vicinity of a bonded joint be-
tween dissimilar materials is sensitive to Poisson’s ratio (Adams
and Peppiatt, 1973). Hence, it is important to describe exactly the
Poisson’s ratio of viscoelastic materials.

Determinations of the viscoelastic Poisson’s ratio may be direct
or indirect. Indirect determinations involve calculation from two
other time or frequency-dependent material functions, short cir-
cuiting any measurements of the transverse strain as such. But it
has been found by Tschoegl et al. (2002) that indirect de-
terminations of Poisson’s ratio have hitherto been singularly un-
successful. In direct determination, Poisson’s ratio is got from actual
measurements of the transverse strain. Recently, measurement
techniques, which used to be the largest conundrum for the direct
determination, have made significant progress (Fathi et al., 2012;
Kim et al., 2003; Le Rouzic et al., 2012; Righetti et al., 2004;

Wong et al., 2000). For instance, the high-definition digital cam-
era was used to measure transverse strain (Addiego et al., 2006),
which can improve the observation accuracy. However, there is
much complex relationship between Poisson’s ratio and time even
when the viscoelastic rod is undergoing a simple uniaxial loading,
for example, during the stress relaxation of compression, the
Poisson’s ratio of some materials is decreasing with time, while it
increases over time in tensile stress relaxation of viscoelastic
specimens (Colucci et al., 1997; Wong et al., 2000), and the visco-
elastic Poisson’s ratio need not increase with time and it also need
not be monotonic with time (Lakes and Wineman, 2006). In this
circumstance, using a simple model to characterize accurately the
viscoelastic Poisson’s ratio is essential for the analysis of visco-
elastic behaviors.

Fractional calculus is an excellent mathematical instrument for
modeling viscoelastic behaviors and particularly suited for building
the time-dependent constitutive model. The use of fractional cal-
culus is motivated in large part by the fact that fewer parameters
are needed to achieve accurate approximation of experimental
data. Up until now, it has received tremendous success in the
description of the stressestrain relationship of viscoelastic mate-
rials (EL-Shahed, 2006; Hyder Ali Muttaqi Shah and Qi, 2010; Qi and
Xu, 2007; Rossikhin and Shitikova, 2012;Wang and Xu, 2009), non-
Newtonian fluids (Mahmood et al., 2009), anomalous diffusion
(Sun et al., 2009) and other fields (Gaul et al., 1989; Kovacic and
Zukovic, 2012; Lazopoulos, 2006; Ngueuteu and Woafo; Youssef
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and Al-Lehaibi, 2010). It is known that fractional calculus is
employed is being used in both solid mechanics (Zhou et al., 2011)
and fluid mechanics (Mahmood et al., 2009). In the application for
viscoelastic materials, the fractional calculus methodology is
mainly based upon the utilization of an element termed a ‘spring-
pot’. This element essentially replaces the dashpot in the classical
Kelvin and Maxwell viscoelastic models. It is well known that ideal
solids (spring) obeys Hooke’s law, s(t) � ε(t), and Newtonian fluids
(dashpot) satisfy Newton’s law of viscosity, s(t) � d1ε(t)/dt1, where
s is stress and ε is strain. If Hooke’s law is written as s(t)� d0ε(t)/dt0,
it is not difficult to imagine that the spring-pot, which represents an
“intermediate”material, has a fractional relation (Smit and de Vries,
1970):

sðtÞ ¼ rxc
dcεðtÞ
dtc

; ð0 � c � 1Þ (1)

where c may be a non-integer and dcε(t)/dtc is a fractional deriv-
ative of strain versus time. Moreover, r and x are material constants
and t denotes time. Comparison with the traditional spring-
dashpot model, the fractional stressestrain component model
enjoys the advantage of having fewer parameters and simple forms
(Schiessel et al., 1995). In the theory of viscoelasticity, the trans-
verseelongitudinal strain relationship is as important as the
stressestrain relationship. However, until now it is still unclear that
whether fractional calculus can be employed to characterize the
transverseelongitudinal strain relationship or the viscoelastic
Poisson’s ratio.

In this paper, to explore a new method for describing the
viscoelastic Poisson’s ratio, we are therefore intended to propose
fractional time-dependent deformation component models by
imitating the fractional stressestrain component models.

2. RiemanneLiouville fractional calculus

Fractional calculus is a branch of mathematical analysis that
studies the possibility of taking real number powers or complex
number powers of the differentiation operator and the integration
operator. There are several different definitions in fractional cal-
culus. Here, the RiemanneLiouville fractional calculus will be
introduced because it is used to obtain the relation between lon-
gitudinal strain and transverse strain.

Assuming that f(t) ¼ 0 for t ¼ 0, the RiemanneLiouville frac-
tional order integral is,

d�bf ðtÞ
dt�b

¼ 1
GðbÞ

Zt
0

ðt � sÞb�1f ðsÞds; t > 0; b˛Rþ (2)

where G is the Gamma function.
The RiemanneLiouville differential operator of order b (b > 0) is

defined as a compound of integral operator of order n � b for
(n � 1< b � n) and n-th derivative operator, that is:

dbf ðtÞ
dtb

¼ dn

dtn

"
d�ðn�bÞf ðtÞ
dt�ðn�bÞ

#
; b > 0; n� 1 < b � n: (3)

Assuming that the following function has fractional integral and
derivative, fractional calculus has following primary property:

db

dtb

"
d�bf ðtÞ
dt�b

#
¼ d�b

dt�b

"
dbf ðtÞ
dtb

#
¼ f ðtÞ; b > 0: (4)

For f(t) ¼ tg, Eqs. (2) and (3) can be rewritten as

8><
>:

d�b

dt�btg ¼ Gðgþ1Þ
Gðgþ1þbÞt

gþb

db

dtbt
g ¼ Gðgþ1Þ

Gðgþ1�bÞt
g�b

; b > 0; g > �1; t > 0: (5)

3. Fractional time-dependent deformation component
models

3.1. The single fractional element

It can be known from (Wong et al., 2000) that the transverse
strainetime curve has the similar shape with the stressetime plot
during the stress relaxation in unconfined compression. We know
that the stressetime experimental response can be described well
by the fractional stressestrain component model. Thus, it is natural
for us to expect characterize the transverse strain using a similarity
method.

It is well known that the Hooke’s law, s ¼ Eε, corresponds to
ε
0 ¼ �nε in ideal elastic solids, where ε

0 is the transverse strain, E
and n denote the elastic modulus and Poisson ratio. The analogy is
an important researching method in science, and it has many ap-
plications in physics research and finding out new physical law.
Thus, base on analogy with Eq. (1), it isn’t difficult to imagine that
the paired equations can be written as

ε
0 ¼ �h

daε
dta

: (6)

We want to point out that, although Eq. (6) may be expressed as
ε
0 ¼ �hε for a ¼ 0, h can’t be regarded as Poisson’s ratio.

It is well known that the deformation in ideal elastic solid is from
inner energy and the Poisson’s ratio is a constant. However, the
viscoelastic materials are deformed by the combined effects of in-
ternal energy and entropy (Roylance, 2001), which is the underlying
physical reason for the complicated deformation and the complex
viscoelastic Poisson’s ratio function. As a result of entropic involve-
ment, the molecules in viscoelastic materials can be rearranged to
cause some surprising deformation. For example, after an initial
“hydrostatic stress” induced volume change (increase in tension,
decrease in compression), a time dependent densification was
observed. The tension result is not surprising, owing to the expec-
tation that the volume should relax as the stress relaxes. The inverse
behavior found in compression is surprising (Colucci et al., 1997).

To more accurately depict the time-dependent Poisson’s ratio
usinga simplemodel, imitatingthe fractional spring-potelementand
springelement,we assume that there are twodeformation elements,
fractional deformation element and spring deformation element,
shown in Fig. 1. The two deformation elements obey the fractional
longitudinaletransverse strain relationship, Eq. (6), and ε

0 ¼ �nε in
ideal elastic solids, respectively. Analogously with the fractional
Maxwell, KelvineVoigt and standard linear solid model, a series of
deformation component models can therefore be established.

3.2. The fractional deformation Maxwell model

The standard Maxwell model is composed of a spring and a
dashpot arranged in series. We generalize this model by replacing

Fig. 1. Single elements.
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