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h i g h l i g h t s

� A generic methodology for battery cell terminal voltage modeling is presented.
� Model based experiment design is introduced for optimal battery cell testing.
� The optimal excitation signals cover the entire operating ranges of non-road HEVs.
� The framework is purely data-based and regards relaxation and hysteresis effects.
� Measurements validate the methodology applicable to different cell chemistries.
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a b s t r a c t

An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles,
which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell
terminal voltage model. This paper presents a novel methodology for non-linear system identification of
battery cells to obtain precise battery models. The methodology comprises the architecture of local
model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are
proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load
ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the
non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local
linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of
the LMN. The framework is applicable for different battery cell chemistries and different temperatures,
and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear
battery model is demonstrated on cells with different chemistries and temperatures. The results show
significant improvement due to optimal experiment design and integration of the battery non-linearities
within the LMN structure.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A novel generic methodology for non-linear system identifica-
tion and optimal model based design of experiments (DoE) of
battery cells are proposed in this paper.

The control strategy of hybrid electric vehicles (HEV) is essen-
tially dependent on the state of charge (SoC) of the used traction
battery. The state of charge of the battery is not measurable on-line,

which requires an estimate of the actual SoC during operation [1].
The estimation of the SoC is placed in the battery management
system (BMS) and is often only based on the open circuit voltage of
the battery. This leads to big estimation errors, since the non-linear
behavior of the battery voltage at operation is not regarded with
this approach [2]. Another approach is to integrate the battery
current. Disadvantageously, current offsets are accumulated, which
may lead to estimation errors after some time. The third possibility
is to use SoC estimators (e.g. extended Kalman filter), which require
a model of the battery that can be implemented in the BMS in real
time. The model is an integral part of the BMS and describes the
non-linear dynamic behavior of the battery cell terminal voltage.
The SoC estimation accuracy can be improved only if a precise non-
linear battery cell model is used in the SoC estimator [3].
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Non-road hybrid electric vehicles and machinery (e.g. con-
struction site vehicles, mining vehicles, …), compared to on-road
vehicles, usually demand higher power densities and load dy-
namics, which makes the modeling of the batteries more compli-
cated [4]. The non-linear battery effects (e.g. hysteresis, relaxation,
temperature effects, …) of electrochemical batteries are increased
due to the high power densities [5].

In this paper, a non-linear data-based battery model is pro-
posed, which can be used for the purpose of accurate SoC estima-
tion in non-road vehicles. Optimal model based DoE is utilized to
optimize the excitation signals for battery measurements. The
optimal excitation signals are used for the model parameter iden-
tification to increase the accuracy at high dynamic demands.
Furthermore, due to the experiment design and data-based struc-
ture, the model can be obtained for different battery cell chemis-
tries within a reasonable time period.

State-of-the-art battery models and DoE are reviewed in the
following. The solution approach and the contributions of the paper
are summarized at the end of this section.

1.1. State-of-the-art

In the literature three main types of battery model approaches
are mentioned:

1. Equivalent circuit models
2. Electrochemical battery models
3. Data-based battery models.

Equivalent circuit models (ECM), as depicted in Fig. 1 exem-
plarily, use basic electric elements in order to model a battery cell.
The main intention is to parameterize the model using physically
interpretable values. Gao et al. [5] used an ECMwith one RC circuit,
that accounts for non-linear equilibrium potentials, rate- and
temperature-dependencies, thermal effects and response to tran-
sient power demand. Pattipati et al. [6] used a modified equivalent
circuit model for SoC, state-of-health (SoH) and remaining useful
life estimation in the BMS. The high power density application in
automotive industry requires to consider the behavior of the
impedance elements (such as solution resistance, charge transfer
resistance, and Warburg impedance) in a simple ECM (see Gomez
et al. [7]).

Electrochemical battery models pursue to physically model the
electrochemical behavior of the battery. These models are able to
simulate the chemical states of a battery accurately and to give
insight into the system itself [8], while the disadvantage is that they
are computationally intensive. Doyle et al. [9] modeled a lithium
battery cell by using concentrated solution theory. Partial
differential-algebraic equations are used by Klein et al. [8] for state
estimation. Santhanagopalan et al. [10] used a single particle model
(SPM) for SoC estimation with an extended Kalman filter. However,

due to non-consideration of spatial variation of the states in the
battery cell, the success of the SPM model, especially at high cur-
rents or long duration pulses, might not be valid for the operating
region encountered for HEV [11].

Data-based models are a useful way for modeling and estima-
tion purposes, although in general, the model parameters are not
physically interpretable [8]. Plett [12,13,3], used a data-based non-
linear state space model for extended Kalman filter SoC estimation.
The model takes different current directions into account and
regards a “hysteresis state” as well as the relaxation using a low
pass filter on the current. Battery cell chemistry independence of
the model is assumed. Charkhgard et al. [14] applied neural net-
works to battery modeling. Based on a stochastic fuzzy neural
network [15,16,17], Wang et al. [18] modeled the non-linear dy-
namics of current, temperature and SoC to the battery voltage. Xu
et al. [19] used the same model for SoC estimation. Hametner et al.
[1] applied a local model network (LMN) to battery modeling. A
LMN is composed of several local models that are linear in their
model parameters and have a certain area of validity defined by
validity functions (see e.g. Refs. [20,21,22]). The model output is
non-linear, due to the non-linear interpolation of the local linear
models (LLM). The LMN is constructed by an iterative algorithm,
which starts with one global linear model and adds a LLM to the
network in every iteration until a certain threshold is reached
(partitioning). The validity of the new LLM lies in a specific form in
the partition space of the model and depends on the algorithm's
strategy.

All of the mentioned battery models require measurements to
parameterize the model parameters. The measurements are ob-
tained by applying a current excitation signal to a battery cell and
recording the voltage response. Kroeze et al. [23] used simple
constant discharge and charge cycles for the identification of an
ECM, while Gao et al. [5], Chen et al. [24] and Hentunen et al. [25]
made use of a discharge pulse excitation signal for the same pur-
pose. A discharge pulse excitation signal is also used in Ref. [26] for
a model-based estimation of an electrochemical battery cell model.
More advanced ECM (e.g. linear parameter varying models) are
identified in Refs. [27,28,13] using a pulse profile, regarding charge
and discharge mode. Hu et al. [29] employs an asymmetrical cur-
rent step profile, in order to cover a wide range of SoC as well as a
wide current range. This profile is more dynamic compared to the
other excitation signals. An example for low dynamics in non-road
applications is the dynamic Federal Urban Driving Schedule (FUDS),
which is used in many papers as validation signal (see e.g. Refs.
[30,19,23,31]).

Depending on the model approach, the design of the experi-
ment plays an important role since the excitation signal has a
decisive influence on the parameter estimation, especially for data-
based model approaches [4,1]. Model based design of experiments
can be used to create optimal excitation signals: The goal is that,
based on a prior model of the process (reference model), the in-
formation obtained from measurements is maximized and pa-
rameters can be estimated with minimum variance [32]. In this
context, the Fisher information matrix I (FIM), a way to measure
the information content of a signal, is often used for optimization of
an excitation signal. Furthermore, constraints of the process can be
regarded, provided that the referencemodel is sufficiently accurate.

In Ref. [33], a local model network based generation algorithm
for static experiment design is proposed. Dynamic experiment
design for multilayer perceptron networks by choosing optimal
inputs from a candidate set is proposed in e.g. Refs. [34,35]. Stadl-
bauer et al. [36,37] focused on the dynamic design of experiments
based on multilayer perceptron networks. Based on these papers,
Hametner et al. [38] proposed a design approach for non-linear
dynamic experiments, which is targeted to minimize the modelFig. 1. Equivalent circuit model with two RC-elements.
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