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h i g h l i g h t s

� Robust condition monitoring of Li-Ion cell using multiple model adaptive estimation.
� Equivalent circuit based model was updated with a nonlinear OCVeSOC relationship.
� The OCVeSOC equation was obtained via curve fitting of the experimental data.
� The model bank includes a normal cell and two distinctively over-discharged cells.
� RLS method was used to identify the model parameters from measured data.
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a b s t r a c t

In this paper, a model based condition monitoring technique is developed for lithium-ion battery con-
dition monitoring. Here a number of lithium-ion batteries are cycled using two separate over discharge
test regimes and the resulting shift in battery parameters is recorded. The battery models are constructed
using the equivalent circuit methodology. The condition monitoring setup consists of a model bank
representing the different degree of parameter shift due to overdischarge in the lithium ion battery.
Extended Kalman filters (EKF) are used to maintain increased robustness of the condition monitoring
setup while estimating the terminal voltage of the battery cell. The information carrying residuals are
generated and evaluation process is carried out in real-time using multiple model adaptive estimation
(MMAE) methodology. The condition evaluation function is used to generate probabilities that indicate
the presence of a particular operational condition. Using the test data, it is shown that the performance
shift in lithium ion batteries due to over discharge can be accurately detected.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Lithium ion (li-ion) batteries are the electrochemical energy
source of choice today. A typical li-ion rechargeable cell with
lithium metal oxide based positive electrode, graphitic carbon
negative electrode, and lithium conducting organic electrolyte, of-
fers great advantages over other battery chemistries [1,2]. With
major advantages of high energy density, safer chemistries, low
self-discharge, longer cycle life, broad temperature application, the
li-ion batteries, availability in different form factors, are used in a
range of applications like consumer electronics, automotive, space
exploration, and medical implants [1,3], to name a few. With these
growing applications in mind the health of the Li-ion battery be-
comes a critical factor in the combined system functionality of the
device.

Faults occurring in the li-ion battery can be attributed to number
of factors either individual, like structural failure, failure of thermal
management, or more likely, a combination of factors involving
manufacturing defects, over charge, over discharge, and short cir-
cuit. The currently available li-ion battery safety devices can be
broadly divided into internal and external protection. The internal
elements are implanted on the battery cell and provide protection
against over current, high temperature, high pressure, over charge,
and over discharge. The commonly used internal safety elements
are the polymeric positive temperature coefficient (PPTC), charge
interrupt devices (CID), and the printed circuit boards [4,5]. The
external protection elements ensure the battery safety under over
charge, overdischarge, and shorting through the use of devices like
protection diodes, dedicated battery charging integrated circuit
elements, temperature sensors, and more. Some of these devices
are resettable while others are one time use, which later renders
the battery useless. Furthermore, these protective devices fail to
provide the user with any information regarding the condition of
the battery, extent of the fault, fault identification, and battery
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health prognosis. Critical insight into the battery health can be
obtained by implementing analytical redundancy. It involves
reconstructing the process behavior on-line by using models which
mimic the actual process under study. The application of analytical
redundancy for li-ion battery condition monitoring, fault detection
and diagnosis results in better understanding of the battery dy-
namics, and hence contributes towards safer batteries, which leads
to the overall system safety.

The application of fault detection and diagnosis on li-ion bat-
teries is not new, extensive work in this area has been done by
researchers with focus on different faults and related techniques.
The work on li-ion battery fault detection is based primarily on the
state estimation, empirical techniques, parameter identification,
data driven methods and others.

Substantial work in the field of fault detection and diagnosis,
and prognosis in li-ion battery using data driven methods has been
carried out by Saha et al. [6e8]. Related research by using support
vector machine algorithm for state of health (SOH) and remaining
useful life (RUL) was recently carried out by Nuhic et al. [9] and
Wang et al. [10]. These methods involve the application of classi-
fication and regression algorithms found under the paradigm of
machine learning. In Ref. [11], the author uses AC impedance
spectroscopy (IS) along with auto regressive moving average
(ARMA), neural network, and fuzzy logic techniques for parameter
identification, estimation and eventually battery prognosis. Data
driven techniques do not require in depth knowledge of the battery
and its underlying mechanisms, hence their implementation does
not involve expert knowledge of the process under study. The
biggest hurdle in using data driven methods can be attributed to
the computational expensiveness and requirement of extensive
data for training, and the time involved in learning.

A combination of rule based signal monitoring and probability
based Li-ion battery fault detection and diagnosis was explored by
Xiong et al. [12], these methods rely heavily on the thermal sig-
natures of the battery which in turn depend on the rate of charge/
discharge applied on the cell. Further, there is little information
regarding the initial state of the cell under test; as it is difficult to
achieve an over discharge cell failure in LiFePO4 cell chemistries
after two cycles. In Ref. [13], the open circuit voltage (OCV) is
analyzed along with model based approach to detect the cell
nominal capacity fade due to cycling. This technique gives good
results for offline applications where the load can be disconnected
and there is enough time to accurately access the OCV of a given
cell.

Sate estimation involves the evaluation of the state of the bat-
tery, while the choice of technique can differ based on the re-
quirements, the aim is to access the information related to the Li-
ion battery that is not readily available through measurement
[14]. The choice of state variable depends on the model of the
system, but for Li-ion batteries, SOC among others is a natural
candidate. Application of Luenberger observers (LO) for fault
detection and diagnosis can be found in Ref. [15], here the authors
implement fault diagnosis on a string of Li-ion batteries using a
bank of reduced order observers. LO is a good candidate for fault
detection and diagnosis in systems with little or no measurement
noise, but with presence of noise, this setup will face inherent
difficulties especially under subtle but important performance
variation. The use of Kalman filters under the paradigm of observer
based fault diagnosis for fault detection and diagnosis in Li-ion
batteries is given in Ref. [16]. Where the optimal filter shows
strong robustness to noise and the adaptive nature of the algorithm
ensures accurate fault detection.

The use of observer based fault diagnosis under the paradigm of
model based fault diagnosis offers inherent benefits like the
decoupling of faults of interest from other faults, and minimizing

the effects of unknown disturbances and model uncertainties [17].
These advantages are further utilized in the multiple model adap-
tive estimation (MMAE) technique; a special type of observer based
fault diagnosis technique. MMAE employs a Kalman filter bank of n
filters, where one observer represents the healthy condition of the
process being monitored while the remaining n�1 observers
represent the fault conditions of the process [16,18,19]. In addition
to this apparent extension to the single observer case, MMAE also
provides the added advantage of including a probabilistic approach
to fault detection and diagnosis.

This paper is organized as follows: Section 2 describes the bat-
tery model, Section 3 describes the model-based fault diagnosis
using nonlinear observers for residual generation and probability
evaluation. Section 4 discusses the design of the experiment, and
Section 5 provides the discussion of the results obtained. The
conclusion of the work is captured in Section 6.

2. Battery modeling

Li-ion batteries can be modeled using different techniques
namely electro chemical, neural networks, empirical, experimental
and equivalent circuit [20,21]. The choice of modeling technique is
a tradeoff between capturing cell dynamics and computational
demand. For real time application the equivalent circuit model
approach is adopted because it gives good representation of cell
dynamics while maintaining low computational resource usage.

The Li-ion battery can be modeled as a third order system using
lumped electrical elements like resistors and capacitors. The
equivalent circuit model is shown in Fig. 1.where, Rb is the ohmic
resistance, which accounts for the limited conductance of the
metallic contacts, inter cell connections, electrode material and the
bulk electrolytic resistance to electron and ion migration [1,22],
constant phase element (CPE) C and resistance R are used to model
the distribution of reactivity depicting the local property of the
electrode., charge transfer resistance Rct and double layer capaci-
tance Cdl represent the interfacial impedance of the cell [23] and
VOCV represents the battery cell OCV. The CPE captures the distri-
bution of reactivity at the electrodes which can be attributed to
variation in surface properties. The impedance function of the
combined RC pair is given by Refs. [23,24],

ZCPEðuÞ ¼
R

1þ ðjuÞaQR (1)

where, a is the depression factor associated with the CPE and is
assumed to be unity. As a result Q can be replaced by C and the CPE
then behaves like a normal capacitor [22,23].

The circuit parameters depend on the SOC, temperature and
capacity fade effects [25]. For this study, parameter dependency on
these factors is assumed to be small. The effect of non-linear
element in the equivalent circuit namely Warburg impedance
representing the diffusion phenomenon is considered to be negli-
gible [26].

Fig. 1. Li-ion battery equivalent circuit model.
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