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h i g h l i g h t s

� Estimation of State of charge (SOC) and State of health (SOH) in lead-acid batteries.
� Algorithm development based on symbolic dynamic filtering for feature extraction and k-NN for pattern classification.
� Validation on experimental data.
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a b s t r a c t

This short paper presents a recently reported dynamic data-driven method, Symbolic Dynamic Filtering
(SDF), for real-time estimation of the state-of-health (SOH) and state-of-charge (SOC) in lead-acid bat-
teries, as an alternative to model-based analysis techniques. In particular, SOC estimation relies on a k-NN
regression algorithm while SOH estimation is obtained from the divergence between extracted features.
The results show that the proposed data-driven method successfully distinguishes battery voltage re-
sponses under different SOC and SOH situations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Lead-acid batteries provide low-cost energy storage with high
power density and operational safety. Consequently, large lead-acid
battery packs are increasingly being used in vehicles, renewable
energy applications, power backup systems, and the smart grid.
Applications requiring large and dynamic power demands (e.g.,
plug-in electric vehicles and hybrid locomotives) use real-time
estimates of the state of health (SOH) and the state of charge
(SOC) to efficiently allocate power and energy within battery packs
and between other prime movers such as internal combustion
engines. Accurate SOC estimates mitigate the risk of the battery
system being over-charged and over-discharged; similarly, reliable
SOH estimates enhance preventive maintenance and life cycle cost
through recharging or replacement of battery units.

The battery SOC and SOH can be estimated from the available
current and voltagemeasurements at reasonable sampling rates (e.g.,

~1Hz forexperiments in thispaper) basedonasimplifiedmodelof the
cell electrochemistry. This approach results inestimates thatexplicitly
related to the geometric,material, andelectrochemical characteristics
of the underlyingmodel. A variety of parameter estimation tools (e.g.,
system identification, minimum variance, and linear least squares)
have been applied to lead-acid [1] and lithium-ion [2] batteries.

This paper proposes a dynamic data-driven approach for SOC
and SOH estimation of the lead-acid batteries as an alternative to a
model-based approach. The proposed estimation method is built
upon the concept of symbolic dynamic filtering (SDF) [3] that has
been successfully applied in a variety of physical processes for
anomaly detection [4] and pattern recognition [5]. The major ad-
vantages of the data-driven parameter estimation method, pre-
sented in this short paper, are delineated below.

� The proposed method of battery parameter estimation is
capable of real-time execution on in-situ computers (e.g., at
sensor nodes of individual batteries).

� There is no requirement for a detailed knowledge of the battery
electrochemistry and its internal dynamics.
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2. Battery state parameters

This section introduces standard definitions of pertinent battery
parameters, at a given ambient temperature [6].

Definition 2.1. (Battery capacity) The capacity C(t) of a battery at
time t is its maximum charge (in units of ampere-hours) that can be
drawn from its fully charged condition at a rate C(t)/30 (in units of
amperes).

Definition 2.2. (SOH) Let a new battery be put into service at time
t0. The state of health SOH(t) of the (possibly used) battery at the
current time t, where t � t0, is defined to be the ratio of the battery
capacities at time epochs t and t0, i.e.,

SOHðtÞ ¼ CðtÞ
Cðt0Þ

ct � t0 (1)

Definition 2.3. (DOD and SOC) Let a battery be fully charged at
time t and let I(t) be the applied current (in units of amperes) at
time t. Then, depth of discharge (DOD) and state of charge (SOC) at
time t þ Dt are respectively defined as

DODðt þ DtÞ ¼ 1
CðtÞ

ZtþDt

t

IðtÞdt;Dt � 0 (2)

SOCðt þ DtÞ ¼ 1� DODðt þ DtÞ; Dt � 0 (3)

Remark 2.1. It is noted that SOH 2 [0,1] and SOC 2 [0,1] for all
time t � t0, where t0 is the time of putting a new battery into
service.

The current practice of SOH estimation includes battery capacity
measurement, battery impedance measurement, and coup de fouet
methods [7]. Capacity measurement is a slow process as it requires
full discharge to SOC ¼ 0 followed by a full charge to SOC ¼ 1.
Impedance measurement employs dedicated hardware and/or
software to directly measure either DC or AC resistance of the
battery [8,9]. The battery impedance also increases as the battery
ages and the measured impedance can be correlated to SOH. Coup
de fouet [7], [10] is observed in Lead-Acid batteries that have been
fully charged, rested, and then pulse discharged. During the first
discharge pulse, the voltage dips and then increases and levels off at
a plateau voltage, followed by a steady rate of decrease. The voltage
dip or undershoot has been empirically shown to be proportional to
SOH of the cell [11], [12]. In this work, the capacity measurement
method has been used to calibrate the SOH at different stages of
battery life.

There are several existing methods for SOC estimation, which
include ampere-hour counting, measurements of electrolyte's
physical properties, and open-circuit voltage testing. Ampere-hour
counting requires an accurate current measurement and the SOC
estimate is computed from Definition 2.3. The electrolyte in lead-
acid batteries plays an important role in the charge and discharge
reactions. The linear relationship between the acid concentration
and SOC can be used to determine the latter; similarly, the open
circuit voltage varies monotonically with SOC. In this paper,
ampere-hour counting has been used to compute the SOC for the
experimental work.

3. Symbolization of time series

This section briefly describes the underlying concept of symbolic
dynamic filtering (SDF) uponwhich the proposed data-driven tool of
battery parameter estimation is constructed. SDF encodes the
behaviorof (possiblynonlinear)dynamical systemsfromtheobserved
time series by symbolization and construction of state machines (i.e.,
probabilistic finite state automata (PFSA)) [3]. This is followed by
computation of the state probability vectors that are representatives
of the evolving statistical characteristics of the battery's dynamical
system.

Symbolization is achieved by partitioning the time series data
into a mutually exclusive and exhaustive set of finitely many
segments. In this paper, the maximum-entropy partitioning
(MEP) [13] has been adopted to construct the symbol alphabet S
and to generate symbol sequences, where the information-rich
regions of the data set are partitioned finer and those with
sparse information are partitioned coarser to maximize the
Shannon entropy of the generated symbol sequence from the
reference data set. As seen at the upper left hand corner plot of
Fig. 1, each segment is labeled by a unique symbol and let S

denote the alphabet of all these symbols. The segment, visited by
the time series plot takes a symbol value from the alphabet S.
For example, having S ¼ {a,b,g,d} in Fig. 1, a time-series x0x1x2…
generates a sequence of symbols in the symbol space as:
s0s1s2…, where each si, i ¼ 0,1,2,…, takes a symbol value from the
alphabet S. This mapping is called symbolic dynamics as it at-
tributes a (physically admissible) symbol sequence to the
dynamical system starting from an initial state. For example, see
the symbol sequence at the top right hand corner of Fig. 1.

The core assumption in the SDF analysis for construction of
probabilistic finite state automata (PFSA) from symbol sequences is
that the symbolic process under both nominal and off-nominal
conditions can be approximated as a Markov chain of order D,
called theD-Markovmachine,whereD is apositive integer.While the
details of the D-Markov machine construction are given in Refs. [3],
[13], the pertinent definitions and their implications are succinctly
presented below.

Definition 3.1. (DFSA) A deterministic finite state automaton
(DFSA) is a 3-tuple G ¼ (S,Q,d) where:

1) S is a non-empty finite set, called the symbol alphabet, with
cardinality jSj<∞;

2) Q is a non-empty finite set, called the set of states, with cardi-
nality jQj < ∞;

3) d:Q � S / Q is the state transition map;

and S+ is the collection of all finite-length strings with symbols
from S including the (zero-length) empty string 3, i.e., jεj ¼ 0.

Remark 3.1. It is noted that Definition 3.1 does not make use of an
initial state, because the purpose here is to work in a statistically
stationary setting, where no initial state is required as explained by
Adenis et al. [14].

Definition 3.2. (PFSA) A probabilistic finite state automaton
(PFSA) is constructed upon a DFSA G ¼ (S,Q,d) as a pair K ¼ (G,p),
i.e., the PFSA K is a 4-tuple K ¼ (S, Q,d,p), where:

1) S,Q, and d are the same as in Definition 3.1;
2) p:Q � S / [0,1] is the probability morph function that sat-

isfies the condition ss2Spðq; sÞ ¼ 1 cq2Q . Denoting pij as
the probability of occurrence of a symbol sj2S at the state
qi2Q, the (jQj � Sj) probability morph matrix is obtained as
P ¼ [pij].
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