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A continuous time non-homogenous linear growth pure birth Markov model was used to pre-
dict the future pit depth distribution of internally corroded oil and gas pipelines. A negative bi-
nomial distribution was used for calculating the transition probability functions of the pit
depths whilst pit depth growth was estimated for low, moderate, high and severe pitting cor-
rosion rates using field measured data of pit depths, temperatures, CO2 partial pressures, pH
and flow rates. The Markov predicted results agreed well with field measured pit depth data
from X52 grade pipeline and L-80 and N-80 grades offshore well tubing.
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1. Introduction

Pitting process can be metastable in nature — a situation in which a pitting process starts and stops after a while or immedi-
ately [1,2] or it can be a stable pitting that nucleates and grows indefinitely. Stable pits generally show stochastic behaviour [1,3]
and are the focus of many researches. Pitting corrosion is initiated due to:

i. Electrochemical reactions of the carbon steel surfaces with the environment resulting in the formation of surface layers;
ii. discontinuity of the carbon steel material as a result of inclusions; and
iii. removal of an already formed surface layer due to erosion [4].

Forecasting of pitting corrosion rate has been done by modelling, extrapolation or using expert judgement [5]. Modelling tech-
nique can follow either probabilistic, deterministic or both approaches and has widespread application as exemplified by numer-
ous publications [1,6–7,8,9]. Yusof et al. [6] studied pitting corrosion of offshore pipelines with Markov chain model and
discovered that the prediction was not conservative due to the assumption that the model is linear. The data for the analysis
was from repeated in-line inspection (ILI) of internal corroded offshore pipelines.

The authors assumed time of initiation of internal pitting corrosion as 2.9 years (after Velazquez et al. [10]) which is time of
initiation of underground pipeline external pitting corrosion. This assumption may invalidate the result of these authors since the
environmental condition of the soil is definitely different from that inside the pipeline. Although the future predicted pit depth
distribution in this work was based on the exponential parameter (Vp) of power law being 1, the authors proposed Eq. (1) for
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predicting the value of Vp for future pit depth distribution if the initial pit depth (Pd1) and time (t1) and future pit depth (Pd2) and
time (t2) are known with the pitting initiation time (tint).

Vp ¼
log

Pd2
Pd1

� �

log
t2 � tint
t1 � tint

� � ð1Þ

The work of Valor et al. [1] focused on pitting corrosion of underground pipelines and corrosion coupons. The authors used
discrete pit depths in non-homogenous, continuous time Markov chain modelling to determine the transition probability function
by correlating the stochastic mean pit depth with the empirical deterministic pit depth. They used Weibull process for simulation
of the pitting induction time. Other researchers such as Bolanos-Rodriguez et al. [11], Valor et al. [12] and Rodriguez III et al. [13]
also applied non-homogenous, continuous time pure birth Markov chain modelling to estimate the pit depth distribution of pipe-
lines by using a closed form of Kolmogorov forward equation for computation of the transition probability function whilst assum-
ing that the pit depth follows a stochastic process. Similarly, Camacho et al. [14] applied Fokker–Planck equation for transition
probability function estimate of pitting corrosion of underground pipelines based on a continuous time, non-homogenous pit
depth evolution and Hong [15] worked on pit initiation and growth processes by modelling pit initiation as a homogenous
Poisson process whilst estimating the pit growth with time as a non-homogenous, continuous time Markov process.

Pipeline failures resulting from pitting have been attributed to pin-hole type pit [8] hence, the need for extreme value model-
ling of maximum pit depths of corroded pipelines to predict the distribution in the future. Valor et al. [8] applied a stochastic
modelling approach to estimate the extreme value distribution of corroded low carbon steel using API-5L X52 pipeline corrosion
coupons experimental data. Melchers [16] showed that extreme value analysis can be carried out with limited data if it is com-
bined with Bayesian approach and demonstrated this feat with carbon steel coupons exposed to marine environment. Similarly,
Melchers [17] used a bi-modal probability density function to represent the maximum pit depth distribution of mild steel exposed
to marine environment and concluded that maximum pit depth distribution is better represented with Fretchet distribution for a
long-time exposure of the material than Gumbel distribution that is traditionally used for the extreme value distribution plotting
[1–3,5,18–19] however, Sheikh et al. [9] showed that the initial pitting corrosion followed a normal distribution and lognormal
distribution for long-time exposure of carbon steel material to a corrosive environment.

Sulphate Reducing Bacteria (SRB) are the most active contributor to pitting in long-time exposure of carbon steel materials to
marine environment [2] because their metabolic activities results in sulphate ion reduction to hydrogen and sulphide. The sul-
phide ion attacks the steel electrochemically causing more pitting corrosion due to an increase in anodic/cathodic reactions neces-
sitated by sulphate reduction. Other researchers also found out experimentally that sulphur reducing bacteria starved of organic
energy sources cause severe pitting corrosion of carbon steel materials [20]. Although cathodic protection and other forms of coat-
ing have the ability of protecting marine infrastructures like pipelines from external pitting corrosion, ageing infrastructures ex-
posed to marine environment have serious problem of pitting corrosion which can predominantly cause assets failures. Rivas
et al. [3] used block maxima and peak over threshold approach for extreme value analysis of laboratory simulated field data of
buried carbon steel pipeline and concluded that the peak over threshold approach was more robust in estimating the maximum
pit depth of the samples. In their own work, Valor et al. [21] described pit initiation and propagation as a stochastic process of
non-homogenous Poisson process and non-homogenous continuous time Markov process respectively. They used extreme
value statistics for modelling maximum pit depth growth for data obtained from literature. Although the work produced better
results than those obtained from available literature (see ref. [21]), however, the assumption that the entire pits tested nucleates
instantaneously may not always be the case practically.

Corrosion can result in unscheduled downtime especially for pitting corrosion, crevice corrosion, stress corrosion cracking and fa-
tigue corrosion since they occurwithout outward signs on the facilities [22]. Hence, corrosionmodelling is used for integrity manage-
ment via prediction of expected time of pipeline failure so that mitigation actions that could include inspection and repairs will be
initiated [7–8,23–24]. To establish the time dependent reliability of corroded high pressure offshore pipelines, Zhang and Zhou
[25] determined the expected future internal corrosionwastage distribution due to internal pressure using Poisson square wave pro-
cess. The authors established the time of pipeline failure with respect to small leak, large leak and rupture by using in-line inspection
data after modelling stochastic pit depth growth with homogenous gamma distribution according to Eq. (2):

fG Pd tð Þjα t� tintð Þ;βð Þ ¼ βα t� tintð Þ � Pd tð Þα t�t0ð Þ�1 � e�Pd tð Þβ � I tð Þ
Γ α t� tintð Þð Þ ð2Þ

where fG(Pd(t)|α(t- t0),β) is the probability density function of the pit depth at time t, α(t- t0) is the time dependent shape
parameter, Γ(.) is the gamma function, I(t) is an indicator function with values given in Eq. (3).

I tð Þ ¼ 1 if tNtint
0 if 0≤t≤tint

�
ð3Þ

Bazán and Beck [26] also used Poisson square wave process to model external pitting corrosion of underground pipelines and
concluded that power model gave a more conservative estimate of the future corrosion wastage than random linear model after
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