
An electrically impermeable and magnetically permeable interface crack with
a contact zone in a magnetoelectroelastic bimaterial under uniform
magnetoelectromechanical loads

P. Ma a, W.J. Feng a, R.K.L. Su b,*

aDepartment of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, PR China
bDepartment of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China

a r t i c l e i n f o

Article history:
Received 2 May 2011
Accepted 21 September 2011
Available online 7 October 2011

Keywords:
Interface crack
Magnetoelectroelastic bimaterial
Contact zone

a b s t r a c t

An interface crack with a frictionless contact zone at the right crack tip between two dissimilar mag-
netoelectroelastic materials under the action of remote mechanical, electrical and magnetic loads is
considered. The open part of the crack is assumed to be electrically impermeable and magnetically
permeable. Both the DirichleteRiemann boundary value problem and Hilbert problem have been
formulated and solved exactly. Stress, electrical displacement and magnetic induction intensity factors as
well as energy release rate are found in analytical forms. Transcendental equations and a closed form
analytical formula for the determination of the real contact zone length have been derived and analyzed.
Some numerical results are plotted to show the effects of the applied loads on the contact zone length,
stress intensity factor and energy release rate.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Magnetoelectroelastic materials have been widely used in
electronics industry. The technical applications may include
waveguides, sensors, phase invertors, transducers, etc. (Parton and
Kudryavtsev, 1988). In the design of magnetoelectroelastic struc-
tures, it is important to take into account imperfections, such as
cracks, which are often pre-existing or are generated by external
loads during the service life. Therefore, in recent years, the research
on fracture mechanics of magnetoelectroelastic materials has
drawn a lot of interest (Zhou et al., 2004, 2009; Gao et al., 2004;
Chue and Liu, 2005; Hu and Li, 2005; Feng et al., 2005; Feng and
Su, 2006; Li and Kardomateas, 2006; Li and Lee, 2008; Niraula
and Wang, 2006; Wang et al., 2006, 2008; Zhao et al., 2006; Feng
et al., 2007; Yong and Zhou, 2007; Zhong and Zhang, 2010; Li,
2001; Singh et al., 2009).

For two-dimensional (2-D) plane crack problems, Liu et al.
(2001) derived the Green’s functions for an infinite magneto-
electroelastic plane containing an elliptic cavity. They reduced the
cavity solution to obtain the solution for a permeable crack. Gao
et al. (2003a,b) analyzed single and collinear cracks in an infinite
magnetoelectroelastic material and obtained the extended stress

intensity factors. Song and Sih (2003) and Sih et al. (2003) inves-
tigated the influence of both magnetic field and electrical field on
crack growth, in particular, on crack initiation angle under various
crack surface conditions for Mode-I, Mode-II, and mixed-mode
crack models. Tian and Gabbert (2004) and Tian and Gabbert
(2005) studied the interaction problem of multiple arbitrarily
oriented and distributed cracks and the interaction problem of
macrocrack-microcrack in homogeneous magnetoelectroelastic
materials, respectively. Wang and Mai (2007) discussed the effects
of four kinds of ideally magnetoelectrical crack face conditions on
fracture properties of magnetoelectroelastic materials. Zhong and
Li (2007) obtained the T-stress for a Griffith crack in an infinite
magnetoelectroelastic medium based on magnetic and electrical
boundary conditions nonlinearly dependent on the crack opening
displacement. Zhou et al. (2007, 2008) investigated the static
fracture behaviors of a single crack or two cracks in piezoelectric/
piezomagnetic materials by the Schmidt method. Chen (2009)
considered the energy release rate and path-independent integral
in dynamic fracture of magneto-electro-thermo-elastic solids.
Zhong et al. (2009) investigated the transient response of a mag-
netoelectroelastic solid with two collinear dielectric cracks under
impacts.

However, all the above-mentioned works are related to crack in
a homogenous magnetoelectroelastic medium. Due to the oscil-
lating singularity of crack tips (Williams,1959; Rice,1988), the study
of interface crack between dissimilar magnetoelectroelastic
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materials is very limited. Gao et al. (2003c) andGao andNoda (2004)
derived the exact solution for a permeable interface crack between
two dissimilar magnetoelectroelastic solids under general applied
loads andunder uniformheatflow, respectively. Li andKardomateas
(2007) investigated the interface crack problem of dissimilar
piezoelectromagneto-elastic anisotropic bimaterials under in-plane
deformation taking the electric-magnetic field inside the interface
crack into account. Feng et al. (2009, 2010) considered both the
dynamic and static fracture problems of interface cracks between
twodissimilarmagnetoelectroelastic layers. Li et al. (2009) analyzed
themagnetoelectroelasticfield inducedbya crack terminating at the
interface of a bi-magnetoelectrical material. It is worth to mention
that recently Zhao et al. (2008) further gave an analysis method of
planar interface cracks of arbitrary shape in three-dimensional (3-D)
transversely isotropic magnetoelectroelastic bimaterials, and that
Zhu et al. (2010) investigated the mixed-mode stress intensity
factors of 3-D interface crack in fully coupled magneto-electro-
thermo-elastic multiphase composites, where the extended hyper-
singular intergro-differential equation (E-HIDE) method was used.

On the other hand, as well known, by introducing contact zone
model, the oscillating singularity can be effectively eliminated
(Comninou, 1977; Atkinson, 1982; Simonov, 1985; Dundurs and
Gautesen, 1988). About ten years ago, Qin and Mai (1999),
Herrmann and Loboda (2000) and Herrmann et al. (2001) devel-
oped the contact zone model to interface crack problems of
piezoelectric bimaterials. However, to the best of our knowledge,
up till now, although lots of achievements on crack problems of
magnetoelectroelastic materials have been made, because of
mathematically complexity, only one paper related to contact zone
model for an interface crack between two dissimilar magneto-
electroelastic materials (Herrmann et al., 2010) was reported,
where two kinds of magnetoelectrical boundary conditions, i.e.,
magnetoelectrically permeable, electrically permeable and
magnetically impermeable, were considered.

In the present paper, we further analyze the interface crack
problem by considering the contact zone model. Different from the
work of Herrmann et al. (2010), the electrically impermeable and
magnetically permeable crack surface assumption is adopted here.
After a complex mathematics manipulation, all the contact zone
length,field intensity factors (including stress, electrical displacement
and magnetic induction intensity factors) and energy release rate are
derived, and numerical results are given and analyzed in detail.

2. Basic equations for a magnetoelectroelastic solid

In the rectangular Cartesian coordinate system xi (i¼ 1, 2, 3), the
governing equations for magnetoelectroelastic materials may be
written in the following form (Gao and Noda, 2004):8<
:

sij ¼ cijksεks � esijEs � hsijHs;
Di ¼ eiksεks þ aisEs þ disHs;
Bi ¼ hiksεks þ disEs þ misHs;

(1)

εij ¼
1
2
�
ui;j þ uj;i

�
; Ei ¼ �4;i; Hi ¼ �f;i; (2)

sij;j ¼ 0; Di;i ¼ 0; Bi;i ¼ 0; (3)

where sij, Di, Bi are the components of the stresses, electrical
displacements andmagnetic inductions, respectively; εij, Ei,Hi are the
components of strains, electrical fields and magnetic fields, respec-
tively;ui,4,fare themechanicaldisplacementcomponents, electrical
potential andmagnetic potential, respectively. cijks, eiks, hiks,dis are the
elastic, piezoelectric, piezomagnetic, and electromagnetic constants,
respectively; ais, msi are the dielectric permittivities and magnetic

permeabilities, respectively. i, j, k, s range in {1, 2, 3}, the repeated
indexes imply summation, and the comma stands for the differenti-
ation with respect to the corresponding coordinate variables.

From Eqs. (1)e(3), one gets the following governing equations:8><
>:

�
cijksuk þ esij4þ hsijf

�
;si
¼ 0;

ðeiksuk � ais4� disfÞ;si ¼ 0;
ðhiksuk � dis4� misfÞ;si ¼ 0:

(4)

By using the LekhnitskiieEshelbyeStroh representation and its
application to magnetoelectroelastic materials, a general solution
of Eq. (4) can be presented in the form (Gao and Noda, 2004)

V ¼ AfðzÞ þ AfðzÞ; (5)

t ¼ Bf 0ðzÞ þ Bf
0ðzÞ; (6)

where V¼ [u1, u2, u3, 4, f]T, t¼ [s31, s32, s33, D3, B3]T (the superscript
‘T’ stands for the transposed matrix), A ¼ [A1, A2, A3, A4, A5]T;
f(z) ¼ [f1(z1), f2(z2), f3(z3), f4(z4), f5(z5)]T in Eqs. (5) and (6) is an
arbitrary analytic vector functionwith five components determined
later. zj¼ x1þpjx3 (j¼1, 2,., 5). Forafixed j,pjandAj¼ [a1j,a2j,a3j,a4j,
a5j]T are respectively an eigenvalue and an eigenvector of the systemh
Q þ pj

�
R þ RT

�
þ p2j T

i
Aj ¼ 0 (7)

with the elements of the 5 � 5 matrices Q, R and T defined as

Q ¼
2
4 QE e11 h11
eT11 �a11 �d11
hT
11 �d11 �m11

3
5; R ¼

2
4 RE e31 h31
eT13 �a13 �d13
hT
13 �d13 �m13

3
5;

T ¼
2
4 RE e33 h33
eT33 �a33 �d33
hT
33 �d33 �m33

3
5; (8)

and�
QE

�
jk
¼ c1jk1;

�
RE

�
jk
¼ c1jk3;

�
TE

�
jk
¼ c3jk3;�

eij
�
m ¼ eijm;

�
hij

�
m ¼ hijm

(9)

The 5 � 5 matrix B can be found by the formulas

B ¼ RTA þ TAP (10)

with P ¼ diag[p1, p2, p3, p4, p5]. The prime ðÞ denotes differentiation
with respect to the argument, the overbar stands for the complex
conjugate.

For transversely isotropic magnetoelectroelastic materials
poled in the direction x3 which have an essential practical signif-
icance, all the fields are independent of the coordinate x2, the
displacement V2 of the vector function V decouples in the (x1, x3)-
plane from the components (V1, V3, V4, V5). In the following
chapters, our attention will be focused on the plane problem for
the components (V1, V3, V4, V5).

3. Statement of the problem and solutions

3.1. Amagnetoelectroelastic bimaterial planewith an interface crack

A bimaterial composed of two dissimilar magnetoelectroelastic
semi-infinite planes x3 > 0 and x3 < 0 with material properties
defined by the following material constants cð1Þijks, e

ð1Þ
iks , h

ð1Þ
iks , d

ð1Þ
is , að1Þis ,

mð1Þsi and cð2Þijks, e
ð2Þ
iks , h

ð2Þ
iks , d

ð2Þ
is , að2Þis , mð2Þsi , respectively, is considered

(Fig. 1). We assume, that the vector t is continuous across the whole
bimaterial interface, that the part L ¼ ð�N; cÞWðb;NÞ of the
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