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a b s t r a c t

When a single void grows in an elasticeplastic material a cavitation instability may occur, if the stress
triaxiality is sufficiently high. The effect of neighbouring voids on such unstable cavity growth is studied
here by comparing two different models. The first model considers a periodic array of voids, which
allows for different rates of growth of two different types of voids. The second model considers a single
discretely represented void embedded in a porous ductile material. It is shown that these two models
represent very different interaction behaviour. According to the first model small voids so far apart that
the radius of the plastic zone around each void is less than 1% of the current spacing between the voids,
can still affect each others at the occurrence of a cavitation instability such that one void stops growing
while the other grows in an unstable manner. On the other hand, the second model only accounts
for effects of neighbouring voids that are inside the plastic zone surrounding the central void. The unit
cell models analysed are axisymmetric, considering the full range of unstable stress states with the
transverse true stress either larger than or smaller than the axial true stress.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

For a single small void in an elasticeplastic solid under pure
hydrostatic tension a critical stress level has been found, at which
the void growswithout bound for a stationary overall strain (Bishop
et al., 1945; Hill, 1950). This unstable void expansion is driven by the
elastic energy stored in the surrounding material. It has been
shown that such cavitation instabilities also occur under axisym-
metric stress states (Huang et al., 1991; Tvergaard et al., 1992),
when the stress triaxiality is so high that the stress level is very high
relative to the yield stress. More recently Niordson and Tvergaard
(2006) have studied size-effects on the phenomenon and Legarth
and Tvergaard (2010) have analysed such instabilities in a 3D
stress state with anisotropic plasticity. Also, in the context of
nonlinear elasticity there has been much interest in cavitation
instabilities (Ball, 1982; Horgan and Abeyaratne, 1986; Horgan and
Polignone, 1995).

Experiments of Ashby et al. (1989) for a metal wire bridging
a crack in a glass matrix have shown fracture by the growth of
a single void to a diameter visible on the fracture surface, which
approaches half the diameter of the metal wire. This has resulted in
speculations on how this single void would interact with other
voids present in the material. Tvergaard (1996) has used an
axisymmetric cell model containing two independently growing
voids to study their interaction at a cavitation instability.

Subsequently, Tvergaard and Vadillo (2007) and Tvergaard (2008)
have studied the interaction with neighbouring voids by ana-
lysing the possible cavitation instability of a void embedded in
a porous ductile material. Other studies have focused on the effect
of different size voids. Thus, Faleskog and Shih (1997) have
proposed the mechanism that a small cylindrical void between two
larger cylindrical voids may experience highly accelerated growth
in the local stress fields enhanced by the stress concentrations
around the larger voids. Tvergaard (1998) used the axisymmetric
two-void model to study the growth of a very small spherical void
surrounded by much larger spherical voids, and found that also the
small spherical void shows accelerated growth due to the stress
fields around the larger voids. This was confirmed in an analysis
based on nonlocal plasticity (Tvergaard and Niordson, 2004),
although this study emphasized that a high growth rate of a very
small void is not realistic if the void radius is as small as the char-
acteristic material length.

In the present paper the axisymmetric cell model with
two independently growing voids (Tvergaard, 1996) is reconsider-
ed.In a study of cavitation instabilities this model has the advantage
that each type of void is completely surrounded by voids of
the other type, so that interaction of different discretely repre-
sented voids is modelled. The analyses carried out here consider
very small void volume fractions, as is important in relation
to cavitation instabilities, and are also extended to cover the range
where the transverse stresses exceed the axial tensile stress.
For comparison, analyses using the model with a void embedded inE-mail address: viggo@mek.dtu.dk.
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a porous ductile material (Tvergaard and Vadillo, 2007; Tvergaard,
2008) are carried out as well. It is shown that these two models
represent quite different aspects of the instability problem.

2. Problem formulation

The first micromechanical model to be analysed here is an
axisymmetric model for a material with a periodic array of voids
(Fig. 1), where two types of voids can have different size and grow
independently. In the axisymmetric model (Fig. 2), also used in
(Tvergaard, 1996), the voids are initially spherical, with radii R1 and
R2, and each void has the opposite type of void as its six nearest
neighbours. In the real periodic pattern of voids (Fig. 1) the
axisymmetric model is indicated by a hatched region in Fig. 1a and
by dashed circles in Fig. 1b. Thus, the axis denoted by x1 in Fig. 2 is
vertical in Fig.1a and is normal to Fig.1b. The axisymmetric unit cell
applied to analyse such a staggered periodic pattern was first used
by Tvergaard (1990b) for a whisker reinforced metal matrix
composite, and was subsequently used (Tvergaard, 1996) for the
periodic array of voids considered here.

It is noted that a full 3Dmodel withmany tiny voids represented
discretely would be ideal for investigating whether or not these
voids would interact in a cavitation instability situation. However,
this would be numerically very cumbersome. The axisymmetric
two void model is chosen here, as it appears to be the simplest
numerical model, which can give information about the interaction
between initially spherical voids that grow independently.

For the square array seen on the cross-section (Fig. 1b) the
approximation by an axisymmetric unit cell makes use of the initial
radius R0 ¼ B0=p1=2 to keep the void volume fraction in the unit
cell equal to that of the model material. When void No. 1 is that
with initial radius R1, the initial values of the void volume fractions
for the two types of voids are

ðf1ÞI ¼
2
3

R31
A0R20

; ðf2ÞI ¼
2
3

R32
A0R20

(1)

In the cylindrical reference coordinate system used for the unit cell
(Fig. 2), x1 is the axial coordinate, x2 is the radial coordinate and x3

is the circumferential angle. The displacement components and the
nominal traction components on reference base vectors are deno-
ted by ui and Ti. The symmetry boundary conditions at the ends of
the cell are

u1 ¼ �U=2; T2 ¼ 0 at x1 ¼ 0 (2)

u1 ¼ U=2; T2 ¼ 0 at x1 ¼ A0 (3)

where U is a constant. As the neighbouring cell is identical to the
cell analysed but is rotated 180� so that its x1 axis points in the
opposite direction (see Fig. 1a), compatibility is approximately
expressed by the requirements

u1ðxÞ ¼ �u1ðhÞ; for x ¼ h; x2 ¼ R0 (4)

n
R0þu2ðxÞ

o2þnR0þu2ðhÞ
o2¼2

n
R0þu2C

o2
; forx¼h;x2¼R0 (5)

where x and h are distances from the bottom and the top of the cell,
respectively, and u2C is the radial displacement at the centre point C
in Fig. 2. As has been explained at the first application of these
boundary conditions to a metal matrix composite (Tvergaard,
1990b) Eq. (5) gives approximate compatibility between neigh-
bouring cells in the axial direction, while Eq. (6) prescribes that the
total cross-sectional area is independent of the x1� coordinate,
since such cross-sections consist of an equal number of cross-
sections of the two types of neighbouring cells considered. In
a subsequent paper Hom (1992) doing a full 3D analysis for a metal
matrix composite found that this approximate cell model gives
a good representation of the actual 3D results. The equilibrium
conditions on the cell side are specified as

T1ðxÞ ¼ T1ðhÞ; T2ðxÞ ¼ T2ðhÞ; for x ¼ h; x2 ¼ R0 (6)

The average logarithmic strains in the axial and transverse
directions are ε1 ¼ lnð1þ U=A0Þ and ε2 ¼ lnð1þ u2C=R0Þ,
respectively.

The average nominal stresses are computed as the appropriate
area averages of the microscopic nominal stress components on the
surface, noting that it is necessary to average over both the cell
analysed and one of the neighbouring cells of opposite kind. This
gives axial and transverse nominal stress components, while all
shear components vanish. The corresponding average true stresses
S and T are calculated from the nominal stress values, using the
average strains. In each increment, for a given increment _U of the
axial displacement, the increment _u2C of the radial displacement at
the centre is calculated such that the ratio of the average transverse
stress T and the average axial stress S has the prescribed value

T=S ¼ r (7)

Finite strains are accounted for in the analyses, based on a con-
vected coordinate Lagrangian formulation of the field equations,
with the Cylindrical xi coordinate system used as reference (see
Fig. 2). Here, gij and Gij are metric tensors in the reference config-
uration and the current configuration, respectively, with determi-
nants g and G, and hij ¼ 1=2ðGij � gijÞ is the Lagrangian strain
tensor. The contravariant components sij of the Kirchhoff stress

Fig. 1. Periodic staggered array of spherical voids with two different void sizes.
(a) Cross-section along axial direction. (b) Cross-section normal to axial direction.

Fig. 2. Axisymmetric cell model used to analyse the staggered array of spherical voids,
with x1 along the axial direction.
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