

Available online at www.sciencedirect.com

Microporous and Mesoporous Materials 90 (2006) 5-15

MICROPOROUS AND MESOPOROUS MATERIALS

www.elsevier.com/locate/micromeso

Synthesis and structure of Mu-33, a new layered aluminophosphate $|((CH_3)_3CNH_3^+)_{16}(H_2O)_4|[Al_{16}P_{24}O_{88}(OH)_8]$

Claire Marichal^{a,*}, Jean Michel Chézeau^a, Mélanie Roux^a, Joël Patarin^a, José Luis Jordá^{b,1}, Lynne B. McCusker^{b,*}, Christian Baerlocher^b, Philip Pattison^{c,d}

^a Laboratoire de Matériaux à Porosité Contrôlée, ENSCMu, Université de Haute Alsace, CNRS-UMR 7016, 3 rue Alfred Werner,

F-68093 Mulhouse Cedex, France

^b Laboratorium für Kristallographie, ETH Hönggerberg, CH-8093 Zürich, Switzerland ^c Swiss-Norwegian Beamline, ESRF, BP220, F-38043 Grenoble Cedex, France ^d Laboratoire de Cristallographie, EPFL, CH-1015 Lausanne, Switzerland

Received 11 April 2005; received in revised form 8 June 2005; accepted 10 June 2005 Available online 28 July 2005

Dedicated to the late Denise Barthomeuf, George Kokotailo and Sergey P. Zhdanov in appreciation of their outstanding contributions to zeolite science

Abstract

Mu-33, a new layered aluminophosphate with an Al/P ratio of 0.66, was obtained from a quasi non-aqueous synthesis in which *tert*-butylformamide (*t*BF) was the main solvent and only limited amounts of water were present. During the synthesis, *t*BF decomposed and the resulting protonated *tert*-butylamine is occluded in the as-synthesized material. The approximate structure was determined from data collected on a microcrystal $(200 \times 25 \times 5 \,\mu\text{m}^3)$ at the European Synchrotron Radiation Facility (ESRF) in Grenoble, but the quality of these data did not allow satisfactory refinement. Therefore the structure was refined using high-resolution powder diffraction data, also collected at the ESRF. The structure (*P*2₁/*c*, *a* = 9.8922(6) Å, *b* = 26.180(2) Å, *c* = 16.729(1) Å and β = 90.4(1)°) consists of anionic aluminophosphate layers that can be described as a sixring honeycomb of alternating corner-sharing AlO₄ and PO₄ tetrahedra with additional P-atoms above and below the honeycomb layer bridging between Al-atoms. The *tert*-butylammonium ions and water molecules located in the interlayer spacing interact via hydrogen-bonds with the terminal oxygens of the P-atoms. The characterization of this new aluminophosphate by ¹³C, ³¹P, ¹H-³¹P heteronuclear correlation (HETCOR) and ²⁷Al 3QMAS solid state NMR spectroscopy is also reported.

© 2005 Elsevier Inc. All rights reserved.

Keywords: ²⁷Al and ³¹P solid state NMR; Microcrystal; Rietveld refinement; Layered aluminophosphate

1. Introduction

Since the seminal paper by Wilson et al. on the synthesis of aluminophosphate molecular sieves in 1982 [1], a large variety of these materials have been prepared. They are usually characterized by an Al/P ratio of one and a neutral three-dimensional aluminophosphate framework of alternating, corner-sharing AlO₄ and PO₄ tetrahedra. Some members of this AlPO₄-family of microporous materials have structures analogous to

^{*} Corresponding authors. Tel.: +33 3 89 33 67 31; fax: +33 3 89 33 68 85 (C. Marichal), fax: +41 1 632 1133 (L.B. McCusker).

E-mail addresses: c.marichal@univ-mulhouse.fr (C. Marichal), lynne.mccusker@mat.ethz.ch (L.B. McCusker).

¹ Present address: Instituto de Tecnología Química, Universidad Politécnica de Valencia, E-46022 Valencia, Spain.

^{1387-1811/\$ -} see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.micromeso.2005.06.008

those of zeolites. For example, AlPO₄-GIS and AlPO₄-20 are isostructural with gismondine (Framework type: GIS) and sodalite (Framework type: SOD), respectively. However, other compounds, such as AlPO₄-11 (Framework type: AEL) and VPI-5 (Framework type: VFI) do not have zeolite counterparts.

The synthesis of these solids is usually performed in aqueous medium, but a number of new phosphate-based materials have been prepared from non-aqueous or quasi non-aqueous media. As a result of such syntheses, using an organic solvent and only restricted amounts of water, numerous layered aluminophosphates have been obtained [2-9]. Under these conditions, hydrolysis and condensation reaction kinetics are slower than those of comparable hydrothermal systems. Several compositions of layered structures have been reported (e.g. $[Al_3P_4O_{16}]^{3-}$, $[Al_2P_3O_{12}H_x]^{(3-x)-}$ $(1 \le x \le 2)$ [10], $[AlP_2O_8]^{3-}$ $[11,12], [Al(HPO_4)_2(H_2O)_2]^{-}[13]$ or $[Al_4P_5O_{20}H]^{2-}$ [9]), and most are characterized by an Al/P ratio of less than one. These compounds contain layers consisting of 4.6^2 , 4.6.8 and 4.6.12 nets.

The alkylformamide family of solvents was used in a series of quasi non-aqueous syntheses to produce a monoclinic variant of $|AIPO_4|$ -**SOD** [14], the two layered aluminophosphates, Mu-4 [9] and Mu-7 [15], and, more recently, the two new gallophosphates Mu-30 [16] and Ea-TREN-GaPO [17]. In all cases, with the exception of $|AIPO_4|$ -**SOD**, the organic solvent partly decomposed into the corresponding amine, which was occluded in the final structure.

The title compound Mu-33 (Mu for Mulhouse) was prepared in a quasi non-aqueous synthesis procedure using *tert*-butylformamide (*t*BF) as the main solvent. Details of its synthesis, of its characterization by 13 C, 27 Al, 31 P, 1 H $^{-31}$ P heteronuclear correlation (HETCOR) and 27 Al 3QMAS solid state NMR spectroscopy, and of its structure analysis are given in the following sections.

2. Experimental section

2.1. Sample preparation

Mu-33 was first prepared from a gel containing mainly *tert*-butylformamide (*t*BF) as the solvent [18]. In order to obtain a pure material, several experiments were performed and the amounts of the reactants were optimized. Typically, 1.23 g of pseudo-boemite (Condéa hydrated alumina, water loss at 600 °C: 22.2 wt%) was slowly added to 3.30 g of 85% orthophosphoric acid (Fluka). The resulting gel was stirred until it was homogeneous. Finally, 8.0 g of an aqueous *tert*-butylformamide solution (BDH, analytical grade) was added to the mixture. The gel, with the composition 0.66 Al₂O₃: 1.0 P₂O₅: 3.0 H₂O: 5.9 *t*BF, was heated in a Teflon-lined stainless-steel autoclave at 170 °C under autogeneous pressure for seven days. The solid recovered by filtration was washed with distilled water and dried at 60 °C overnight.

2.2. Characterization

The as-synthesized product was characterized initially by X-ray powder diffraction using a STOE STADI-P diffractometer equipped with a curved germanium 111 primary monochromator and a linear position-sensitive detector (CuK α_1 radiation, $\lambda = 1.5406$ Å).

The morphology and average size of the crystals were determined by scanning electron microscopy (SEM) using a Philips XL30 microscope.

Thermogravimetric (TGA) and differential thermal (DTA) analyses to determine the amount of organic species and water occluded in the as-made solid were performed on a Setaram Labsys thermoanalyser by heating the as-synthesized material under air at a rate of 5 °C min⁻¹ up to 750 °C.

C and N analyses were performed by coulometric and catharometric measurements, respectively. The Al and P content were determined by inductively coupled plasma emission spectroscopy.

³¹P, ²⁷Al, ¹³C and ¹H NMR measurements were carried out at room temperature using a Bruker DSX 400 spectrometer $(B_0 = 9.4T)$, at frequencies of 161.9, 104.2, 100.2 and 400.1 MHz, respectively. ³¹P Magic Angle Spinning (MAS) NMR experiments were performed using standard double bearing probes with either 4 or 2.5 mm diameter ZrO₂ rotors, and data were acquired using spinning frequencies between 3.5 and 25 kHz, a $\pi/2$ pulse duration of 3.5 µs and a recycle delay of 200 s. ¹H-³¹P Cross-Polarization Magic Angle Spinning (CPMAS) spectra were recorded using conventional Hartmann-Hahn matching with a spinning frequency of 4 and 25 kHz, a ¹H $\pi/2$ pulse duration of 4 $\mu s,$ contact times ranging from 500 μs to 2 ms, and a recycle delay of 4 s. ${}^{1}H{}^{-31}P$ heteronuclear correlation (HETCOR) experiments were performed at a spinning frequency of 25 kHz, with a contact time of 500 µs. ²⁷Al MAS NMR spectra were recorded using a 2.5 mm Bruker MAS probe, a spinning frequency of 15 kHz and a recycle delay of 1 s. The experimental conditions for the ²⁷Al 3QMAS experiment are described elsewhere [19]. ¹³C MAS NMR experiments were realized with high power ¹H decoupling, a $\pi/2$ pulse duration of 4.5 µs, and a recycle delay of 60 s. Chemical shifts were referenced to an external standard: 85% H_3PO_4 (³¹P), an aqueous solution of Al(NO₃)₃(²⁷Al) and TMS (¹H and ^{13}C).

Although the crystals in the sample appeared to be quite large in two dimensions (see Fig. 1), they proved to be too thin for single-crystal data collection on a laboratory instrument. However, it was possible to collect data on one of these microcrystals using the Oxford DifDownload English Version:

https://daneshyari.com/en/article/77374

Download Persian Version:

https://daneshyari.com/article/77374

Daneshyari.com