
A micro-mechanics based strain gradient damage model: Formulation
and solution for the torsion of a cylindrical bar

C. Oliver-Leblond*, H. Dumontet, D. Kondo
Institut Jean Le Rond d'Alembert, Sorbonne Universit�es, UPMC Univ Paris 06, CNRS, UMR 7190, F-75005 Paris, France

a r t i c l e i n f o

Article history:
Received 30 December 2014
Accepted 6 October 2015
Available online 28 October 2015

Keywords:
Micro-mechanics
Damage model
Strain gradient

a b s t r a c t

The present paper is devoted to the proposal of a theoretical formulation for an isotropic damage model
with strain gradient. The approach is based on the non-local estimates of Drugan and Willis (1996),
exposed in terms of energetic methods, for the purpose of damage modelling. We first focus on the
derivation of the non-local constitutive equations for the damage model which is fully analysed from the
thermodynamics point of view. It is shown that the positive definiteness of the thermodynamic potential
and the intrinsic dissipation are not ensured for every loading paths. The choice of the damage variable is
briefly discussed. The equilibrium equation and the boundary conditions are presented. Then, the model
is applied to the study of strain gradient torsion problem, for which the axi-symmetric solution is
established. This allows us to study the size effect and to evaluate the impact of the non-local term on the
damage evolution and the non-linear behaviour of the bar.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the context of durability studies of civil engineering buildings,
damage mechanics offer an interesting framework to model the
irreversible deterioration of quasi-brittle materials. However, when
softening occurs, strain localisation can be observed and local
damage theory becomes unreliable. From the numerical point of
view, the loss of objectivity implies a dependency between the
amount of dissipated energy and the mesh refinement. Non-local
damage models are widely used to overcome those issues and
can be split into three different categories: regularisation of the
strain variable as in the integral non-local model (Pijaudier-Cabot
and Ba�zant, 1987) or in the implicit gradient model (Peerlings
et al., 1996; Kuhl and Ramm, 2000), introduction of the damage
gradient in the strain energy (Fr�emond and Nedjar, 1996; Lorentz
and Andrieux, 1999; Pham and Marigo, 2013) or introduction of
the strain gradient in the strain energy (Zhou et al., 2002).

Another important motivation of nonlocality is the need to
capture size effects observed in fracture experiments on concrete
(Walsh, 1972). Indeed, the size of the fracture process zone is in-
dependent of the size of the structure e provided it does not
interfere with its boundaries e and therefore it can be observed

that the nominal strength of geometrically similar specimens is
dependent on the structure size. A characteristic length, related to
the size of the fracture process zone, is needed to describe the
transitional type of size effect. A review on nonlocality, including an
historical summary of its main motivations can be found in (Bazant
and Jirasek, 2002).

These regularised models introduce additional material pa-
rameters whose calibration can be difficult to carry out. Indeed, the
identification of these material parameters cannot be achieved
through simple experiments due to the localisation of the fields,
which generally introduce structural effects in the mechanical
response. Moreover, most of the time the additional parameters are
independent of the level of damage or stress e a proposal can be
found for the non-local integral regularisation method where the
internal length depends on the stress level (Giry et al., 2011)e even
though the non-local interactions are expected to change according
to the state of the medium.

A key question concerning non-local damage models of quasi-
brittle materials is that of the physical origin of the non-locality
and its proper incorporation in the continuum damage mechanics
framework. This question has been earlier pointed out in several
papers among which (Bazant, 1994) for the non-local integral
regularisation, (Andrieux et al., 1996) for the regularisation with a
damage gradient and (Li, 2011) for the regularisation with a strain
gradient in 2D.
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An appropriate way to establish physical-based regularised
damage models e and then to circumvent the aforementioned
problems of the non-local material parameters e is to derive the
constitutive law by means of homogenisation techniques. There-
fore, the main objective of the present paper is to formulate and
study a micro-mechanics based non-local damage model with
strain gradient from the non-local estimates of Drugan and Willis
(1996). The relevance of such a model, to which numerous works
refer in the litterature, and its ability to capture the size effects due
to nonlocality is investigated in this work.

The paper is organised as follows. First, from the non-local mi-
cro-mechanical analysis of Drugan and Willis, we derive the basic
elements of the proposed macroscopic non-local damage model.
The thermodynamic potential and the state laws are presented, as
well as the damage criterion and the evolution laws. A careful use of
the model is done in order to guarantee the positiveness of the
thermodynamic potential and of the intrinsic dissipation. Then, we
present the equilibrium equation and the boundary conditions
which are classically deduced from the principle of virtual work.
Finally, we establish the exact solution for the torsion of a cylin-
drical bar which obeys the non-local law. Size effects due to the
non-local behaviour are illustrated. The impact of the non-local
term on the damage evolution and the non-linear behaviour of
the bar is also evaluated.

2. Formulation of a micro-mechanics based strain gradient
damage model

2.1. Drugan and Willis non-local elasticity model (1996)

The present study is based on the micro-mechanical non-local
constitutive equations established by Drugan and Willis (1996).
Considering a class of two-phase composites with an isotropic and
statistically uniform distribution of phases, these authors showed
that the macroscopic strain energy depends on both the macro-
scopic strain state E and the macroscopic strain gradient state VE:

wðE;VEÞ ¼ 1
2
E12

ð4ÞChom12E þ 1
2
VE13

ð6ÞBhom13VE (1)

where1n is the nth tensor contraction between a tensorA of order
greater than n and a tensor a of order n such that
½A1na�i;…;j ¼ Ai;…;jk;…;lak;…;l. For clarification, the energy potential
given in equation (1) can be rewritten in indicial notation:
wðEij; Eij;kÞ ¼ 1

2 Eij
ð4ÞChom

ijpq Epq þ 1
2 Eij;k

ð6ÞBhom
ijkpqrEpq;r .

The energy potential (1) is continuously differentiable with
respect to the macroscopic strain tensor E and the macroscopic
strain gradient tensor VE. State laws can therefore be derived, thus
providing the macroscopic stress tensor S and the macroscopic
double stress tensor T:

S ¼ vw
vE

¼ð4ÞChom12E; T ¼ vw
vVE

¼ð6ÞBhom13VE (2)

If the structure is made of an isotropic matrix reinforced or
weakened by a uniform dispersion of non-overlapping identical
isotropic spheres, both the 4th order tensor ð4ÞChom and the 6th
order tensor ð6ÞBhom can be explicitly constructed.

Let us consider a linear elastic matrix whose properties are the
shear modulus m0 and the bulk modulus k0. This matrix contains an
uniform dispersion of non-overlapping identical spherical voids of
volume concentration c defined by:

c ¼ 4
3
Npa3 (3)

where a and N respectively stand for the voids radius and the voids
density i.e. the number of voids per unit of volume.

The classical Hashin-Shtrikhman upper bound provides the
macroscopic stiffness tensor of the porous material:

ð4ÞChom ¼ 3khom
ð4Þ

Jþ 2mhomð4ÞK (4)

where ð4ÞJ ¼ I5I=3 and ð4ÞK ¼ ð4ÞI� ð4ÞJ are the two isotropic 4th
order projectors, ð4ÞI ¼ I5sI is the symmetric 4th order unit tensor,
I is the second order unit tensor,5 is the tensor product and5s the
symmetric tensor product. The homogenised shear modulus and
bulk modulus are respectively given by:

mhom ¼ m0
ð1� cÞð9k0 þ 8m0Þ

9k0 þ 8m0 þ 6cðk0 þ 2m0Þ
(5)

khom ¼ k0
4ð1� cÞm0
3ck0 þ 4m0

(6)

The isotropic 6th order tensor obtained by Drugan and Willis
reads:

ð6ÞBhom ¼ �bhom
�
ð6ÞK2 þ

7
4
ð6ÞK4 �

7
2
ð6ÞK6

�

�
�
3
4
ghom þ 11

4
bhom

�
ðð6ÞJ1 þ ð6ÞJ2 þ ð6ÞJ4 þ ð6ÞJ5Þ

�
�
9
4
ghom þ 3bhom

�
ðð6ÞJ3 þ ð6ÞJ6Þ

�
�
2ghom þ 3

2
bhom

�
ðð6ÞJ7 þ ð6ÞJ8Þ

�
�
3
2
ghom þ 2bhom

�
ð6ÞJ9

(7)

where the 6th order tensors ð6ÞKn for n ¼ 1,…,6 and ð6ÞJm for
m¼ 1,…,9 constitute an irreducible basis for the 6th isotropic order
tensors as proposed by (Monchiet and Bonnet, 2011). Their ex-
pressions are given in Appendix A.

The non-local parameters bhom and ghom depend on the porosity
c and the voids radius a and are given by:

ghom ¼ 4ca2
ð2� cÞð1� cÞ2

5ð1þ 2cÞ m20ð3k0 þ 4m0Þ �
5ð3k0 þ 4m0Þ½21k0m0 � 2m0ð3k0 þ 8m0Þ� � 12ð1� cÞk0m0ð3k0 þ m0Þ

21ð3ck0 þ 4m0Þ½5m0ð3k0 þ 4m0Þ � 6ð1� cÞm0ðk0 þ 2m0Þ�2
(8)
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