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a b s t r a c t

An equation of motion governing the response of a first strain gradient beam, including the effect of a
Winkler elastic foundation, is derived from the HamiltoneLagrange principle. The model is based on
Mindlin's gradient elasticity theory, while the Euler-Bernoulli assumption for slender beams is adopted.
Higher-continuity Hermite Finite Elements are presented for the numerical solution of related Initial-
Boundary Value (IBV) problems. In the static case an analytical solution is derived and the conver-
gence characteristics of the proposed Finite Element formulation are validated against the exact response
of the configuration. Several examples are presented using “equivalent beam” data for Carbon Nanotubes
(CNT's) and the effect on the Winkler foundation is studied. Finally, applicability of the derived model for
the simulation of micro-structures, as for example CNT's or Microtubules, is discussed.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Non-classical continuum field theories have drawn much
attention for more than one century due to their ability to model
the micro e structural behaviour of materials (Mindlin, 1964, 1965;
Mindlin and Eshel, 1968). More precisely, classical elasticity theory
has been found unable to simulate adequately mechanical phe-
nomena of theoretical, structural or technological importance
(Mindlin, 1964, 1965; Mindlin and Eshel, 1968; Fried and Gurtin,
2006; Fleck and Hutchinson, 1993). This incapability becomes
more obvious in the case of materials with intense micro e struc-
ture such as granular materials, foams, various polymers, poly-
crystals, etc. The existing literature on the subject is quite extended
and covers many aspects of non e classical field theories of both
theoretical and practical importance (Mindlin, 1964, 1965; Mindlin
and Eshel, 1968; Fried and Gurtin, 2006; Fleck and Hutchinson,
1993; Ru and Aifantis, 1993; Altan and Aifantis, 1997; Lazar and
Maugin, 2006; Polizzotto, 2012, 2014; Yang et al., 2002;
Georgiadis and Grentzelou, 2006). Applications of gradient the-
ories include elastic and plastic deformation of solids, micro-flows

and others with a wide range of applications e.g. (Mindlin, 1964,
1965; Mindlin and Eshel, 1968; Fried and Gurtin, 2006; Fleck and
Hutchinson, 1993).

Along with the technological advance, the need for more so-
phisticated equipments (micro and nano e devices) becomes a
necessity. This fact has moved non e classical field theories from
theory to practice, as they are now used for the design and behavior
prediction of structural components (Papargyri e Beskou et al.,
2003; Tsamasphyros et al., 2007; Ma et al., 2008; Reddy and
Pang, 2008; Giannakopoulos and Stamoulis, 2007; Lazopoulos
and Lazopoulos, 2010). The simple bending of such beams has
been examined by several authors. We mention here Altan and
Aifantis (1997), who considered the problem of beam vibration,
Papargyri e Beskou et al. (2003), who have performed static
analysis of such beams, along with the examination of buckling
phenomena and finally Giannakopoulos and Stamoulis (2007), in a
quite recent paper on structural gradient elastic components.
Furthermore, some results on the wave dispersion relations of
gradient elastic beams have been derived by Papargyri-Beskou et al.
(2009).

On the other hand, the invention of carbon nanotubes (Iijima,
1991) starts a new research topic for the study of nanostructures.
Recently there was an increasing interest for the applications of the
nonlocal continuum theories at the specific area of nanotechnology.
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CarbonNanotubes (CNTs) seem to pose excellentmechanical, electric
and thermal properties in comparison with the conventional mate-
rials. Because of these properties, CNTs are mainly used in the fields
of nano-devices and nano-electronics (Li and Chou, 2004).

In this paper we analyse the bending behavior of a strain
gradient Euler e Bernoulli beam supported on a linear elastic
Winkler foundation (Winkler, 1867). A sixth order differential
equation is derived along with appropriate boundary conditions.
The resulting IBVp has been solved numerically using a conforming
C2 continuous Finite element Method (FEM). In the present
approach, the theories presented by Yang et al. (2002) and
Papargyri e Beskou et al. (2003) have been combined and the ef-
fects of an elastic Winkler type support have been also included.
The model features not only the derivatives of higher order in the
equations of equilibrium but also terms depended on the section of
the beam, which increase the rigidity of the structure. These terms
have also been noticed by Ma et al. (2008), whose study has also
been applied in different bending problems.

The paper is organised as follows. The derivation of the model
from Hamilton's principle is presented in the following section.
Section 3 deals with the wave dispersion characteristics of the
beam equation. The proposed finite element procedure is analysed
in Section 4. Results regarding the static and transient analysis of
gradient-elastic beams on elastic foundations are studied in Sec-
tions 5 and 6, respectively and a short discussion along with the
conclusions of the present study follows in Section 7.

2. Derivation of the model

We assume an elastic slender structure, resting on a Winkler
foundation and the coordinate system (O, x1, x2, x3), where axis x1
coincides with the reference fibre as depicted in Fig. 1.

Due to the slenderness of the structure and invoking the
EulereBernoulli kinematic hypothesis, it is

u3 ¼ u3ðx1; tÞ; u2 ¼ 0; u1ðx1; x3; tÞ ¼ �x3
vu3
vx1

; (1)

where ui, i ¼ 1,2,3 is the displacement field. According to Form II of
Mindlin's strain gradient theory (Mindlin, 1964), where apart from
the classical strain field εij, the gradients kijk: ¼ εkj,i (with the
standard indicial notation) are introduced, the in-plane compo-
nents of the strain and strain gradient are

ε11ðx1; x3; tÞ ¼ � x3
v2u3
vx21

;

k111ðx1; x3; tÞ ¼ �x3
v3u3
vx31

;

k311ðx1; x3; tÞ ¼ �v2u3
vx21

:

(2)

The constitutive equations for an isotropic gradient elastic ma-
terial, simplified so as to introduce only one microstructural
parameter, read (Mindlin, 1964)

tij ¼ ldijεkk þ 2mεij; (3)

mijk ¼ g2
�
2mkijk þ lkirrdjk

�
; (4)

where tij, mijk are the classical Cauchy and dipolar stress respectively,
dij is the Kronecker delta and g is a micro-structural constant with
dimensions of length, related to the volumetric strain energy. The
Lam�e constants are denoted as l, m. In the case examined, the
constitutive equations for the given stresses, using Eqs. (2)e(4), as
well as, plane stress conditions onboth x1,x2 andx1,x3 planes, become

t11ðx1; x3; tÞ ¼ Eε11;

m111ðx1; x3; tÞ ¼ g2Ek111 and

m311ðx1; tÞ ¼ g2Ek311;

(5)

where E is Young's modulus. The strain energy U
_
of the considered

structure is

Uh ¼ 1
2
∭
V

tijεij þ mijkkijk

� �
dV þ 1

2

Z
L

kwu23dL; (6)

where kw is the stiffness of the elastic foundation and L the length
of the beam. Denoting by A the cross-section area of the beam,
using Eqs. (2) and (5) and taking into account that u3,11 and u3,111 are
functions of x1 and t only, the strain energy may be written as

U
_ ¼ 1

2

ZL
0

�
Cu23;11 þ Su23;111 þ kwu23

�
dx1; (7)

where, C ¼ E(I11 þ g2A), S ¼ g2EI11 and I11 ¼ ∬
A
x23dA. (8)

Under the assumptions adopted for the type of the micro-
structure, namely Mindlin's strain gradient elasticity, the kinetic
energy of the solid K

_
consists of two parts: the ‘macro’ component

K
_

M and the ‘micro’ component K
_

m and may be written as

K
_ ¼ K

_

M þ K
_

m ¼ 1
2
∭
V
rvtuivtuidV þ 1

6
∭
V
rh2vtui;jvtui;jdV ; (9)

where h is half the edge length of the characteristic cell associated
with the micro-structure (Mindlin, 1964). This constant controls
the micro-inertia effects of the gradient elastic solid.

The variation dU
_

of the strain energy is (after an integration by
parts in order to eliminate the derivatives of du3)

dU
_ ¼

Z
0

��
E
�
I11 þ g2A

�
u3;11

�
;11

� �EI11u3;111�;111
þ kwu3

�
du3dx1 þ

h
g2EI11u3;111ðdu3Þ;11

iL
0

þ
��

E
�
I11 þ g2A

�
u3;11 �

�
g2EI11u3;111

�
;1

	
ðdu3Þ;1

�L
0

þ
��

�
�
E
�
I11 þ g2A

�
u3;11

�
;1
þ
�
g2EI11u3;111

�
;11

	
du3

�L
0
:

(10)

The variation of the kinetic energy, when defined from time
t ¼ t0 to t ¼ t1 is, upon integrating by parts with respect to time andFig. 1. A Prismatic beam on an elastic foundation.
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