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a b s t r a c t

This paper develops an Euler�Bernoulli beam model within the context of a simplified strain gradient
theory with higher-order inertia. In contrast to the classical beam models, the proposed gradient beam
models can capture the size effects by introducing not only the internal length l2 related to strain
gradient but also the internal length l1 related to velocity gradient. The governing equation of motion and
boundary conditions are derived by using the variational principles. The closed-form solutions for free
vibrations of beams with three typical boundary conditions are obtained. Numerical results show that
the choices of the higher-order boundary conditions have a minor effect on the natural frequencies of
beams. In addition, the inclusion of the strain gradient parameter l2 increases the effective stiffness of
beams and hence it increases the natural frequencies of beams; whereas the inclusion of the velocity
gradient parameter l1 acts as an equivalent compression force in the governing equation and therefore it
leads to the decrease of the natural frequencies of beams. Moreover, the significant Poisson effect on the
natural frequencies of beams is observed when the thickness of the beam is comparable to the strain
gradient parameter l2. The closed-form solutions for natural frequencies of beams presented in this work
may serve as benchmark results for other numerical methods.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The classical theory of elasticity fails to capture the size effects of
materials when their characteristic sizes scale down to the order of
microns, as evidenced by the experiment works of Fleck et al.
(1994), Stolken and Evans (1998), Lam et al. (2003), McFarland
et al. (2005) and Sun et al. (2008), to name a few. Owing to the
wide applications of these materials in the micro- and nano-
electro-mechanical systems, it is crucial to accurately predict
their static and dynamic responses by using the continuum
mechanics.

The size-dependent continuum theories, which have been
widely used in the analysis of engineering structures such as
beams, plates and shells, are believed to be useful and effective
tools in the study of the static and dynamic responses of engi-
neering structures. However, the success of the size-dependent
continuum theories depends on, to some extent, the types of the

materials behave. For instance, the strain gradient theories devel-
oped by Kr€oner (1963) and Mindlin (1964) were found useful to
model materials exhibiting stiffening phenomenon; whereas the
nonlocal elasticity originated by Eringen (1983) was found effective
to the analysis of softening materials. The remarkable feature of
these theories which differ from the classical theories is that
additional gradient parameter(s) is/are involved in the constitutive
equations in order to model periodic structures (e.g., crystal lat-
tices, molecules of a polymer, grains of a granular material and van
der Waals interaction between the adjacent atoms). Among these
size-dependent theories, the gradient elasticity is a promising
candidate for modeling the stiffening materials. The advantages of
this theory lie in that it is capable of eliminating the unphysical
singularity at the dislocation core (Gutkin and Aifantis, 1996; Lazar
and Maugin, 2005), predicting the bounded displacement (as
opposed to the classical continuum theory) at the point of appli-
cation of the load (Georgiadis and Vardoulakis, 1998), and pre-
dicting the existence of torsional surface waves in a homogeneous
half-space (Georgiadis et al., 2000), etc. Within the framework of
the gradient elasticity, the classical equations are generalized by
introducing additional spatial derivatives of strains and velocities.
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Here, it was emphasized that the higher-order inertia term (rep-
resented as velocity gradient in this paper) should be included in
the constitutive equations, because the previous works with
gradient models of torsional waves (Georgiadis et al., 2000) and the
flexible wave dispersions (Askes and Aifantis, 2009) showed that
this term was indispensable for waves propagating at high fre-
quencies. Indeed, including it in the wave problems gave results in
consistent with those of atomic-lattice models (Askes and Aifantis,
2009; Georgiadis et al., 2004). Therefore, the high-order inertia
term is considered in the present work by assuming that the kinetic
energy features the velocity and the velocity gradient.

Since Mindlin's linear generalized gradient theory involves a
larger number of material constants, determination of all these
material constants is challenging in the practical applications. As a
result, requirement of the simplified versions of his generalized
gradient theory has attracted numerous attentions. By using the
variational principles, Lam et al. (2003) developed amodified strain
gradient theory in which only three additional material constants
(higher-order material length scale parameters) were involved for
isotropic linear elastic materials. Then, they applied their beam
model to the bending problems of cantilevers with applied
moment and concentrated force at the free end, respectively. In
addition, effects of higher-order boundary conditions on the beam
bending deflection, moment and shear force were demonstrated in
detail. Later, as a simplified version of the so-called Form-II
formulation by Mindlin and Eshel (1968), Polizzotto (2012)
addressed second-grade elastic materials featured by a potential
energy depending upon the strain and the strain gradient, and a
kinetic energy depending upon the velocity and the velocity
gradient. Until now, there have been an increasing number of
works based on this gradient theory, and here we only take the
literatures concerning with the dynamic behaviors of beams
(Ansari et al., 2013, 2012; Asghari et al., 2012; Fakhrabadi et al.,
2013; Kahrobaiyan et al., 2015, 2011; Liang et al., 2014; Wu et al.,
2013), plates (Ashoori Movassagh and Mahmoodi, 2013; Ieşan,
2014; Papargyri-Beskou et al., 2010; Sahmani and Ansari, 2013;
Wang et al., 2011; Xu et al., 2014; Zhang et al., 2015a) and shells
(Daneshmand et al., 2013; Ghavanloo and Fazelzadeh, 2013;
Papargyri-Beskou et al., 2012; Xu and Deng, 2015; Zeighampour
and Tadi Beni, 2014; Zhang et al., 2015b) during recent years as
examples. In these works, simply supported beams, plates and
shells are considered, and the analytical expressions can be readily
obtained. For the structures with other boundary conditions,
however, few analytical results are available for bending, buckling
and free vibrations of such structures. Importantly, such analytical
solutions are helpful for a better understanding of the size effects
phenomena observed both in experimental works and atomic
simulations (Askes and Aifantis, 2009; Lam et al., 2003). As a result,
the boundary value problems of beam structures in bending (Akg€oz
and Civalek, 2012; Giannakopoulos and Stamoulis, 2007; Kong
et al., 2009; Lazopoulos and Lazopoulos, 2010; Li et al., 2011;
Liang et al., 2014; Papargyri-Beskou et al., 2003b), buckling
(Lazopoulos and Lazopoulos, 2010; Li et al., 2011; Papargyri-Beskou
et al., 2003b) and free vibrations (Artan and Batra, 2012; Kong et al.,
2009; Lazopoulos, 2012; Li et al., 2011; Papargyri-Beskou et al.,
2003a) using the strain gradient theories have been the growing
topic of current interest. Although these works provide useful in-
formation in dealing with static (i.e., bending and buckling) prob-
lems, the complete boundary value problems for dynamic
behaviors of beams with various boundary conditions have not
been, to the authors' knowledge, well documented, especially for
the dynamic analysis of the differences of the two alternative
higher-order boundary conditions selected. By using the strain
gradient elasticity, Kong et al. (2009) and Liang et al. (2014)
developed the Euler�Bernoulli beam models without considering

the higher-order inertial effect. For boundary value problems of
beams using hybrid nonlocal beam models, one can refer to Zhang
et al. (2010), in which only one higher-order boundary condition
was analyzed. And also, effect of the higher-order inertia on the
dynamic behaviors of beams had been studied by Lazopoulos
(2012). However, the differential order of the spatial coordinate of
the inertia in Lazopoulos (2012) is different from the present work;
this difference results in the different boundary value problems. It
is accepted that the governing equation of motion of
Euler�Bernoulli beammodels in the context of the second gradient
strain theory is of the sixth order instead of the fourth. Conse-
quently, this increasing order of the (partial or ordinary) differential
equation leads to mathematical difficulties in solving the boundary
value problems in the strain gradient models, even in the simplified
models. In general, the complementing higher-order boundary
conditions should be involved in the boundary value problems of
the sixth order of the (partial or ordinary) differential equation.

The present paper develops an Euler�Bernoulli beam model
based on the simplified strain gradient theory presented by
Polizzotto (2012), in which the effects of both strain gradient and
higher-order inertia are considered. The governing equation of
motion and all the boundary conditions of the gradient
Euler�Bernoulli beams are derived by using the variational prin-
ciples. The boundary value problems for free vibrations of beams
with three typical boundary conditions are addressed to assess the
influences of the alternative higher-order boundary conditions and
the two additional gradient parameters on the dynamic behaviors
of beams. In addition, comparisons of the results reported in the
published works with the present reduced beam models show the
validity of the present closed-form solutions for free vibrations of
gradient Euler�Bernoulli beams. Moreover, numerical results may
serve as benchmark values for further numerical studies.

2. Simplified strain gradient elastic theory

In this section, we present the basic equations which describe
the dynamics of the simplified strain gradient elastic theory ac-
cording to Polizzotto (2012). The strain energy U of a linear three-
dimensional continuum occupying a volume V bounded by the
surface G is given by

U ¼ 1
2

Z
V

�
sijεij þ tijkhijk

�
dV ; (1)

where

εij ¼
1
2
�
ui;j þ uj;i

�
; (2)

hijk ¼ εij;k ¼
1
2

�
ui;jk þ uj;ik

�
; (3)

are the strain tensor and strain gradient tensor, respectively. ui is
the displacement vector, and the Latin indices range from 1 to 3.

In addition, the constitutive equations for the lower-order stress
tensor sij and the higher-order stress tensor tijk are given by

sij ¼ ldijεkk þ 2mεij; (4)

tijk ¼ l22sij;k ¼ l22
�
ldijεll;k þ 2mεij;k

�
: (5)

where l2 is the internal characteristic strain gradient parameter. l
and m are the Lame' parameters related to Young's modulus E and
Poisson's ratio v by
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