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h i g h l i g h t s

� The capacity loss in V-containing AB2 alloy is first slow and then faster.
� The capacity in the V-free AB2 shows a consistent degradation.
� Failure mode of former is the formation of thick oxide on the surface.
� Failure mode of later is the continuous pulverization of the particles.

a r t i c l e i n f o

Article history:
Received 8 October 2013
Received in revised form
14 November 2013
Accepted 16 November 2013
Available online 27 November 2013

Keywords:
Hydrogen absorbing materials
Transition metal alloys
Metal hydride electrode
Electrochemical reactions

a b s t r a c t

Failure modes of a V-containing and a V-free AB2 Laves phase-based metal hydride alloy were studied by
the combination of X-ray diffractometer, scanning electron microscope, X-ray energy dispersive spec-
troscopy, inductively coupled plasma, Soxhlet extraction, and magnetic susceptibility measurement. Cells
with the V-containing alloy exhibited less capacity degradation up until venting occurred in the cells,
after which the capacity rapidly degraded. Cells with the V-free alloy remained linear in capacity
degradation throughout the cycle life test. The failure mechanism for the V-containing alloy is related to
the formation of an oxide layer that penetrates deeper into the alloy particles due to high V leaching and
impedes gas recombination, while the failure mechanism for the V-free alloy is related to the continuous
pulverization of the main AB2 phase.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nickel/metal hydride (Ni/MH) rechargeable batteries are
widely used in consumer portable devices and hybrid electric
vehicles, and development for these applications has a heavy
emphasis on improving gravimetric energy density. While the
conventional misch metal-based AB5 metal hydride (MH) alloy has
a storage capacity of about 330 mAh g�1, AB2 [1,2] and A2B7 [3]
MH alloys have capacities as high as 440 and 410 mAh g�1,
respectively, and will boost the gravimetric energy density found
in Ni/MH batteries. Properties relating to the structure, hydrogen
storage, and electrochemistry of these new alloys have been re-
ported extensively (for a review of research activities in these
areas, see Ref. [4]); however, not much work has been reported

regarding the failure mode analysis of these new alloys e an
essential step of any new material development process. In a
recent report, we compared the failure mode of La-only A2B7 alloy
in a 70% state-of-charge cycling scheme to that of conventional
AB5 [5]. While the La-only A2B7 cell suffers from alloy pulveriza-
tion, the AB5 cell degrades due to alloy oxidation and consequent
poisoning of the positive electrode.

V is an important modifying element used in AB2 MH alloys to
increase the storage capacity [6e11], facilitate activation [8], and
improve both high-rate dischargeability [12] and cycle stability [13]
in the Ni/MH negative electrode. However, the cost of V is much
higher than other elements used in the typical AB2 MH alloy for-
mula. Studies optimizing composition [14] and modifier selection
[15] were performed previously on V-free AB2 MH alloys to reduce
the raw material cost. In this paper, we will compare the failure
modes of two Laves phase-based AB2 MH alloys: one with V and
one that is V-free that came out of the studies.* Corresponding author. Tel.: þ1 248 293 7000; fax: þ1 248 299 4520.
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2. Experimental setup

Inductionmelting from elementary rawmaterials was performed
under an argon atmosphere in a 25 kg induction melting furnace
using an MgO crucible, an alumina tundish, and a steel cylindrical
mold. Ingots were first hydrided/dehydrided and then mechanically
crushed into �200 mesh powder. The chemical composition of each
sample was examined by a Varian Liberty 100 inductively-coupled
plasma (ICP) system. A Philips X’Pert Pro X-ray diffractometer (XRD)
was used to study themicrostructure, and a JEOL-JSM6320F scanning
electron microscope (SEM) with energy dispersive spectroscopy
(EDS) capability was used to study the phase distribution and
composition. Pressureeconcentrationetemperature (PCT) charac-
teristics for each sample were measured using a Suzuki-Shokan
multi-channel PCT system. Half-cell testing was performed using an
Arbin Instruments BT4þ Portable Battery Test System. Magnetic
susceptibility was measured using a Digital Measurement Systems
Model 880 vibrating samplemagnetometer. For full-cell testing, alloy
powder was mixed with binder, pasted onto perforated Ni-plated
stainless steel plate, dried, and compacted into negative electrodes.
AA-sized cylindrical cells were assembled with pasted negative
electrode, pasted Ni(OH)2-based positive electrode, polypropylene/
polyethylene grafted separator, and 30% KOH electrolyte. The cell
design is targeted at a negative-to-positive ratio of 1.4with a capacity
of 1800 mAh. The MH alloy loading is around 7.2 g per cell.

3. Results and discussion

3.1. Alloy properties

The composition, phase distribution, PCT characteristics, elec-
trochemical properties, and magnetic susceptibility properties ofTa
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Fig. 1. PCT isotherms of Alloys A and B measured at 30 �C. Open and solid symbols are
for absorption and desorption curves, respectively. The V-free alloy (Alloy B) shows a
higher maximum storage capacity, a lower reversible storage capacity, a higher and
flatter plateau, and a higher hysteresis.
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