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a b s t r a c t

This paper deals with the refraction phenomenon that appears in the theory of thin shells of which the
mid-surface is developable in presence of rigid folds when the thickness ε tends to zero. Roughly
speaking we talk about thin parabolic shells. On each side of the fold, the nature of the mid-surface of the
shell is developable and boundary conditions ensure the geometric rigidity. The limit problem (ε ¼ 0)
which is also parabolic has some peculiarities that induce singularities. These singularities propagate
along the asymptotic curves also called characteristics. When these singularities encounter a fold on
which transmission conditions are given, they pass through the fold and they continue to propagate
along the characteristic curves of the opposite part of the shell corresponding to the adjacent parts of the
fold. A theoretical approach is proposed in order to study the refraction phenomenon in thin parabolic
shells. Numerical simulations have been constructed to illustrate and observe the refraction phenome-
non. The main result is that, once the singularities have crossed the fold, they continue to propagate
along the characteristic curves of the other side of the fold without any loss or gain of regularity but with
a variation in amplitude.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

It is known that the behaviour of shells for very small values of
the relative thickness ε is highly bonded to the geometrical prop-
erties of the mid-surface and the loadings. Some works were
addressed in this direction see for instance (Karamian, 1998;
Sanchez-Palencia, 2000; Karamian et al., 2000, 2003, 2002a,
2002b; Bechet et al., 2008; Bechet et al., 2009). To our knowledge
there are no studies concerning the behaviour of these singularities
in presence of folds. This paper is devoted to the study and
comprehension of refraction phenomenon which appears in
developable mid-surface, for a given singularity (for instance
loading with special shape and profile). It is known that these
singularities propagate along characteristic curves. The issue is
what happens once they encounter the fold on which transmission
conditions are prescribed. Do they keep propagating after crossing

the fold on the adjacent side of the shell along their characteristic
curves? Is there any change in their shapes and amplitudes? We
must keep in mind that the structure of the system is essentially
parabolic,1 but presents some peculiarities which induce singular-
ities four orders stronger (Bechet et al., 2008, 2009). For instance,
discontinuities of the first kind (i.e. Heaviside singularities) of the
normal loading imply d000-like singularities of the normal compo-
nent of the displacement. The motivation of the study consists in
explaining how these singularities cross the folds on which trans-
mission conditions are given and how they behave when they have
crossed them. Indeed, sometimes their amplitude can present some
variations whereas they keep their degree of singularities. We are
mainly concerned with a developable mid-surface S . So let us
recall that a ruled surface is generated by the displacement of a
straight line so-called generator. If we denote by e!ðy2Þ the unit
vector along the generator containing a given point M(y2), where
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1 We recall that a shell is parabolic when one of its principal curvature vanishes.
It is usually the case of a cylinder or any developable surface.
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M(y2) is a point on a curve C defined by OM
��! ¼ r!ðy2Þ, then a point

P2S belonging to the generator issued from M is given by

OP
�! ¼ r!ðy2Þ þ y1 e!ðy2Þ which is the equation of the surface S . A
developable surface is a particular case of ruled surface: a ruled
surface is said developable when its tangent plane is the same
along each generator. A necessary and sufficient condition for a

ruled surface to be developable is that
�
r!; e!; d e

!
dy2

�
¼ 0. Let us also

recall some elements of general surface theory. For each point
P2S there are two directions, also called asymptotic directions
which are tangent to S , where the normal curvature vanishes.
Point P is said to be elliptic, hyperbolic or parabolic when their
asymptotic directions are imaginary, real and distinct and real
coincident respectively. The two families of curves which are
tangent at each point to the asymptotic directions are called
asymptotic curves. It is classical that a surface is developable when
all its points are parabolic. It is also well known that the generators
of a ruled surface are asymptotic curves. As a consequence, all along
this paper the asymptotic curves are double and coincide with the
generators of the surface S . Moreover, they coincide with the
double characteristics of the membrane system.

The context of this paper that will be explained in Section 2 is
the following. We consider problems of two thin elastic shells for
which the mid-surface is developable, we then talk about parabolic
shells (i.e. the Gauss curvature is equal to zero whereas the prin-
cipal curvatures are not equal to zero everywhere), joined together
along a curve G see Fig. 1 which is identified as a fold in the sequel.
The limit problem corresponding to ε ¼ 0, also called membrane
problem may be written for both shells as follows:

8<
:

D1T
11± þ D2T

12± þ f 1± ¼ 0;
D1T

21± þ D2T
22± þ f 2± ¼ 0;

b±22T
22± þ f 3 ¼ 0;

(1)

8><
>:

D1u
±
1 ¼ C±

11lmT
lm±;

D2u
±
2 � b±22u

±
3 ¼ C±

22lmT
lm±;

D1u
±
2 þ D2u

±
1 ¼ 2C±

12lmT
lm±;

(2)

in a domainU ¼ U�∪Uþ of the (x1,x2)-plane coordinates. The nature
of systems (1), (2) of partial differential equations is the same as the
mid-surface S ¼ S �∪S þ of the shell. That means, the system is
parabolic, hyperbolic or elliptic when S is itself parabolic, hyper-
bolic or elliptic. Moreover, the characteristic lines of the systems
(1), (2) are those of S so, in the case of cylinder or developable
surface studied, the limit problem is parabolic and the character-
istic lines are the generators of S . The unknowns are the

symmetric membrane stresses Tlm± (l, m 2 [1,2]) and the dis-
placements ui (i 2 [1…3]). Let us recall that the symbols D1 & D2
denote the covariant derivative with respect to the variables (x1,x2).
The coefficients C±

ablm are the compliance ones for each part of the
shell and are given smooth functions. The coefficient b±22 corre-
sponds to the second fundamental form of each part of the shell.
These functions are smooth functions and different from zero.

Now, let us define, upon the boundaries vS� and vSþ, two local
direct orthonormal reference systems ð n!�

; t
!�

; a!�
3 Þ and

ð n!þ
; t
!þ

; a!þ
3 Þ, where n!±

and t
!± ¼ a3

�!±
∧ n!±

are the intrinsic
vectors corresponding to the outward unit normal vectors, the unit
tangent vectors and a!±

3 respectively. Let us introduce qð n!�
; n!þÞ

t�
!

with respect to the reference system ð n!�
; t
!�

; a!�
3 Þ. The parameter

q represents the angle between shells. This angle is not necessarily
constant. In the sequel, as we are interested by the study of rigid
folds we will consider it as constant. This remark leads us to
postulate the transmission conditions which are:

u!�
G ¼ u!þ

G and q
�
n!�

; n!þ�
t
!� ¼ Const: on G

These relations ensure the continuity of the displacements and
of the tangential rotation along the fold for all points of G. The fold
has a rigid behaviour, in the sequel, we will talk about rigid fold or

merely fold. Let us recall that the loadings f
!±

¼ ðf 1; f 2; f 3Þ± are
datum such that in general do not belong to the energy space of the
membrane problem. The system (1)e(2) has six equations and six
unknowns. Nevertheless, T22± is given by (13) and u±3 only appears
in (22) which can be taken as a definition of u3. Then the unknowns
are essentially T11± and T12±, u±1 and u±2 . The first two equations of
(1) only involve T11± and T12± since T22± now is a data and constitute
a first-order parabolic system for themwith a double characteristic
x2 ¼ const. We shall notice that, in a general case, the boundary
conditions do not allow us to fully determine T11± and T12±,
nevertheless we assume that the right-hand side of (2) is known
and the first and third equations of (2) form again a first-order
parabolic system u±1 and u±2 with the similar double characteris-
tics. As usual, we focus our attention on forces, which correspond to
the normal component of the loading and the normal displacement
of u±3 . At this stage, we can easily understand that on the adjacent
side of the fold corresponding to the opposite side where the sin-
gularities are generated on the shell, the transmission conditions
on the displacement are going to generate a kind of singularity that
they continue to propagate on the characteristic lines. The paper is
outlined as follows: The real description of the refraction of sin-
gularities is explained in section 4. Precision of mechanical prob-
lems and the specific data are given in section 2. In section 3 we
give the mathematical framework in order to study the expansions
of singularities. In section 5 in view of numerical simulations we
have given the adapted numerical variational formulation. Section
6 is dedicated to a study of a practical example to illustrate the
theoretical results. To finish, in section 7, some numerical simula-
tions illustrate such kind of refraction phenomenon.

2. Mechanical problem

Let us recall here, some elements of shell theory which are
necessary for understanding the sequel of the paper. We limit our
study to linear elastic isotropic shells described by the linear Koiter
shell model. More description for interested readers can be found in
shell treatises (Bernadou, 1994; Koiter, 1970; Ciarlet, 2000;
Goldenveizer, 1962; SANSanchez-Hubert and Sanchez, 1997).

A shell is a continuum medium which can be geometrically
defined by a mid-surface S in the physical space E and a small
parameter ε representing the thickness of the shell around this
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Fig. 1. Reference domain for the parabolic case.
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