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One-dimensional equations of a thermo-piezoelectric beam are obtained by using of double power series
expansion along the thickness and width directions from three-dimensional equations of the linear
theory of piezoelectricity. Both the extension and flexure as well as shear deformations are considered,
accompanying some necessary stress relaxation relations. These equations derived also can be reduced to
the case of elementary flexure without shear deformations. Theoretical and simulation results show that
the static deformation and dynamic properties are all sensitive to the thermoelasticity and thermo-
electricity of the piezoelectric medium. Both the temperature-stress and pyroelectric coefficients de-
creases the resonance frequency and displacement amplitude evidently. The outcome is widely
applicable, and can be utilized to provide theoretical and practical guidance for the design and appli-
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cation of piezoelectric devices especially when considering the temperature response.
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1. Introduction

Piezoelectric materials have been made into several kinds of
electronic devices, including interdigital transducers, energy har-
vesters, transformers, gyroscopes, rotary actuators, BAW (bulk
acoustic wave) and SAW (surface acoustic wave) sensors (Benes
et al,, 1998; Stanton et al., 2011; Vellekoop, 1998) and so forth,
just because of their inherent electromechanical characteristics, the
direct and converse piezoelectric effects. It is well known that the
temperature variation can significantly affect the properties of
these piezoelectric electronic devices, which owes to the fact that
temperature variation induces changes in the material properties
(Gubinyi et al., 2008; Yamada et al., 2001). For instance, the elastic
properties, piezoelectric coefficients, and dielectric permittivity
will change if the piezoelectric materials work at high temperatures
(Gubinyi et al., 2008). In extreme cases, piezoelectric properties will
gradually fade away if the material temperature approaches the
Curie point (Yamada et al., 2001). Therefore, the attempt and
exploration about temperature stability of these piezoelectric de-
vices have been extensively carried out during the past decades of
years (Ro et al., 2013; Rocas et al., 2013; Tomar et al., 2001, 2005;
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Tzou and Ye, 1994), which could be better suited for engineering
applications.

On the other hand, the thermo-electro-mechanical coupling
problem also can be solved in the linear theory of generalized
thermoelasticity for piezoelectric materials (Ashida et al., 1997;
Chandrasekharaiah, 1988; Mindlin, 1974; Tzou and Ye, 1994),
which has ignored the change of material properties caused by
small temperature perturbation. A system of two-dimensional
equations were firstly derived by Mindlin for high frequency mo-
tions of crystal plates accounting for coupling of mechanical, elec-
trical and thermal fields (Mindlin, 1974). Chandrasekharaiah (1988)
and Singh (2005) developed constitutive formulations for dynamic
linear piezothermoelasticity. Based on these theoretical equations,
many issues have been addressed, including nonlinear dynamic
behaviors (Fung et al., 2001), wave propagation (Cao et al., 2011;
Sharma et al., 2004), crack effect (Ueda, 2006), transient response
(Choi et al., 1995), and so on. During the theoretical analysis of the
works mentioned above, some model simplifications, more or less,
have been adopted. For instance, it is very common to assume that
the piezoelectric device is unit size or infinite in one direction in
order to make the theoretical derivation and numerical calculation
feasible (Cao et al., 2011; Choi et al., 1995; Mindlin, 1974; Sharma
et al., 2004). However, the size of a real piezoelectric device is
limited. Sometimes, maybe it will lead to incorrect results when
using of the infinite size assumption (Son and Kang, 2011).
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For three dimensional solids, finite element method (FEM) can
be used to solve the multi-physics coupling problem (Gornandt
and Gabbert, 2002). However, owing to material anisotropy and
its finite size in three directions for a piezoelectric material,
extensional, flexural, shear and torsional deformations usually
coupled together. It is hard to completely distinguish these
coupling modes from the results obtained by FEM. Hence, based on
the classical three-dimensional equations of the linear theory of
piezoelectricity, we derived one-dimensional equations of a ther-
mal piezoelectric beam by using of double power series expansion
along the thickness and width directions. With the introduction of
some necessary stress relaxation relations, the extension and
flexure as well as shear constitutive relations are revised. The
equations derived can be deduced to some classical outcomes,
such as, the case of piezoelectric beam if letting both the
temperature-stress and pyroelectric coefficients to be zero, and
the case of elementary flexure without shear deformations if
setting the zero-order flexural shear strains to be zero. Our theo-
retical analysis is based on power series expansion, which has been
well established by Mindlin (1972, 1974). Dokmeci (1974) and Yang
(1998) have separately derived one-dimensional equations by
expanding the displacement components and electrical potential
function into double series along thickness and width direction for
a pure piezoelectric beam. Later, Zhang et al. (2009) furthermore
investigate the vibration properties of a piezoelectromagnetic
beam using this method. In present contribution, we continue to
derive the one-dimensional equation of a piezoelectric beam
considering its intrinsic thermal effect and pay more attention to
the influence of temperature-stress and pyroelectric coefficients
on the static deformation and dynamic properties for single
extensional motion. The outcome is expected to provide theoret-
ical and practical guidance on the understanding of thermo-
elasticity and thermoelectricity in piezoelectric materials, as well
as the design and application of piezoelectric devices in temper-
ature fields.

2. Basic three-dimensional equations

Consider a thermo-piezoelectric crystal beam as shown in Fig. 1,
whose width, thickness and length are 2a, 2b and 2c, respectively.
The basic mechanical behavior of thermo-piezoelectric crystals
can be described by the classical linear theory of thermopiezoe-
lectricity (Ashida et al., 1997; Chandrasekharaiah, 1988; Mindlin,
1974; Tzou and Ye, 1994). The corresponding displacement
component, electrical potential function and temperature rise
from the stress free reference temperature ®q are denoted by u;, ¢,
and 6, respectively. In absence of body force, the linear theory for
small and dynamic signals in a thermal piezoelectric material
consists of the equations of motion (Newton's law), Gauss's law of
electrostatics, and the entropy density equation (Ashida et al.,
1997; Chandrasekharaiah, 1988; Mindlin, 1974; Singh, 2005;
Tzou and Ye, 1994), i.e.,
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Fig. 1. A thermo-piezoelectric beam with a rectangular cross section and coordinate
system.

D;; =0, (1b)

—Ogn = h;j, (1c)

where Ty, D; and 7 stand for components of stress, electric
displacement and entropy density, respectively. p is the mass
density with h; being the heat flux. The summation convention for
repeated tensor indices is used. Meanwhile, a superimposed dot
represents differentiation with respect to time t. Here, we only
consider the case of small temperature change, i.e., § << 0, and
ignore the change of material properties caused by small temper-
ature perturbation. The governing equations above are accompa-
nied by the following constitutive relations (Zhang et al., 2009):

sij = Sijlekl + e,djEk + 31197 (28)
D; = ey Ty + eiEx + pi0, (2b)
n = AT + DrEy + o, (2¢)

where s;j, ey, and ¢ are the elastic compliances, piezoelectric
constant, and dielectric permittivity, with A; and p; being the
temperature-stress coefficient and pyroelectric constant, respec-
tively. a« = pCE /@y, in which CE stands for specific heat capacity.
Here, the strain tensor S, electric field E;, and the heat flux h; are
defined by

1
Sij = 5 (Uij + i), Ei = o, hi = xi0, 3)
in which «;; stands for heat conduction coefficient. On the boundary
of a finite body with a unit outward normal vector n, usually the
mechanical displacement component u; or traction vector Tn;,
electric potential function ¢ or normal component of the electric
displacement vector Din;, the temperature (6+0g) or the entropy
density may be prescribed to obtain closed-form solutions of the
problem.

3. Double power series expansion

It is assumed that the thermo-piezoelectric beam has a slender
shape, i.e., ¢ >> a,b, with its rectangular cross section as shown in
Fig. 1. In order to develop a one-dimensional theory for thermo-
piezoelectric beams, we will make the following double power
series expansions of the mechanical displacement component u;,
electrical potential function ¢ and perturbation of temperature 6
(Dokmeci, 1974; Mindlin, 1972, 1974; Vashishth and Gupta, 2009;
Yang, 1998; Yang et al., 1999; Zhang et al., 2009):

(s oo
u= Y XU (x3,0), = Y XM (x5, 1),
m,n=0 m,n=0

o0
0= X560 (x3,t).

m,n=0

(4)

These expansions in (4) and the general derivation below
include the usual zero-order and first-order theories for extension
and flexure in which the beam cross section moves and rotates but
does not deform, as well as higher-order effects describing various
deformation modes of the cross section (Dokmeci, 1974; Yang,
1998; Yang et al., 1999). Substitution of Equation (4) into Equation
(3) yields the corresponding series for the strain tensor S; and
electric field E; as well as heat flux h;, i.e.,
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