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The purpose of the present work is the study of three stability criteria for a free standing monolayer
graphene modelled as a monoatomic hexagonal 2-lattice at the continuum level. The criteria treated are:
the phonon stability, the Cauchy-Born stability and the homogenized stability criteria. Phonon stability
requires plane progressive waves to propagate along the material with real velocities. The outcome
consists of necessary and sufficient conditions for the wave speed to be real in terms of graphene's
acoustic tensors. Requiring energy's second variation to be positive render the Cauchy-Born stability
criterion. The outcome consist of a Hessian matrix whose components are derivatives of the energy with
respect to its arguments. The Cauchy-Born stability criterion stipulate this Hessian matrix to be positive
semi-definite. Solving the equations ruling the shift vector, enable to rule the shift vector out of the
energy. The Cauchy-Born stability criterion for this homogenized energy renders the homogenized
stability criterion. These three stability criteria are lied down for graphene for both the geometrically and
materially linear and the nonlinear case. For the phonon stability study the equation ruling the shift
vector has two alternatives: an equilibrium equation and a rate equation according to a gradient flow law.
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1. Introduction

Stability of crystalline solids is the purpose of the study of Elliott
et al. (2006a). These authors examine three crystalline stability
criteria: phonon stability, Cauchy-Born stability and homogenized
stability. Their theory is applicable at the atomic/discrete level:
energy is measured thought a potential describing the interatomic
force every atom experiences by its environment. The field equa-
tions are the equilibrium equations for the discrete body: Newton's
second law for each particle. The main difference in-between these
three criteria is the perturbations they allow which result to some
modes (acoustic or optic) being excluded from the analysis. The
authors conclude that the Cauchy-Born stability is recommended as
the relevant and the more general stability criterion. Their
approach is successfully applied to martensitic transformations
taking place in shape memory alloys for both temperature induced
(Elliott et al., 2006b; Elliott, 2007) as well as stress induced (Elliott
et al.,, 2011) martensitic phase changes for bi-atomic crystals.

The present work is motivated by the above analysis (Elliott
et al., 2006a) and applies to the continuum case for a free
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standing monolayer graphene. We start by viewing graphene as
a monoatomic hexagonal 2-lattice (Fadda and Zanzotto, 2000)
in line with our previous works on the topic (Sfyris and Galiotis,
2015; Sfyris et al., 2014a, 2014b, 2015a, 2015b, 2015c). The “2”
in 2-lattice refers to the presence of two atoms in the unit
translation cell of graphene, while “monoatomic” refers to the fact
that these two atoms belong to the same species: they are
both carbon atoms. Confinement to weak transformation neigh-
borhoods (Ericksen, 1979; Parry, 1978; Pitteri, 1984, 1985; Pitteri
and Zanzotto, 2003) and adoptment of the Cauchy-Born rule
(Ericksen, 2008; Pitteri and Zanzotto, 2003) enable working with
an energy at the continuum level depending on three arguments:
an in-surface strain measure, an out-of-surface measure and the
shift vector. The in-surface strain measure is the standard Cauchy-
Green deformation tensor, Cs, now being two-dimensional. The
out-of-surface measure is graphene's curvature tensor, by, viewed
as a 2-dimensional surface. Energy's dependence on curvature is
motivated by the works of Steigmann and Ogden (Steigmann and
Ogden, 1997a, 1999, 1997b) as well as earlier approaches on the
topic (Gurtin and Murdoch, 1975; Murdoch and Cohen, 1979;
Cohen and DeSilva, 1966). Energy's dependence on the shift vec-
tor, p, result from well established theories of multilattices
(Pitteri, 1985; Pitteri and Zanzotto, 2003).
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Specific expressions for such continuum energies for graphene
are given in Sfyris and Galiotis (2015). For the nonlinear theory
(Sfyris et al., 2014b) we present some simple closed form solutions
such as: biaxial tension/compression, simple shear, as well as a
specific buckling/wrinkling mode. The geometrically and materially
linear counterpart of this theory is presented in Sfyris et al. (2014a).
There, the assumption of linearity simplifies the analysis and fa-
cilitates analytical results for biaxial tension/compression, simple
shear and a specific out-of-plane buckling/wrinkling mode. We
here utilize these energies to constitutively describe graphene at
the continuum level. The field equations for our framework are the
momentum, the moment of momentum and the equation ruling
the shift vector. The first two come from the relevant work of
Chhapadia et al. (2011) while for the equation ruling the shift vector
there are two options. In one case, one can assume that the shift
vector adjust so as equilibrium is reached (Pitteri and Zanzotto,
2003, p. 338). Alternatively, one can use a rate equation for the
shift vector according to a gradient flow law (Pitteri and Zanzotto,
2003, p. 350).

Thus, our framework is designed for the continuum case, in
contrast to the discrete approach of Elliott et al. (2006a). The
interatomic potential used there, is for our continuum framework
the constitutive law describing graphene. The discrete field equa-
tions are substituted by their continuum analogs: momentum,
moment of momentum and the equation ruling the shift vector.
Passage from atomic to continuum theory is treated elegantly in the
works of Bhattacharya and James (1999) and Friesecke and James
(2000) using the mathematical tool of Gamma convergence. In
our framework here, we do not prove such a multiscale limit. We
take graphene's energy (Sfyris and Galiotis, 2015; Sfyris et al.,
2014b, 2014a, 2015a) as the starting point and lay down the con-
tinuum counterparts of the stability criteria of Elliott et al. (2006a).
These criteria should mark the initiation of martensitic trans-
formations for graphene at the continuum level, in line with the
approach of Elliott et al. (2006a, 2006b, 2011) (Elliott, 2007).

At the continuum level graphene experiences weak phase
changes when the matrix of matrices 9W /dy;dy;, y = (Cs,p) is sin-
gular (see Sfyris, 2015). Being a multilattice one may separate these
phase changes into two categories: structural phase changes and
configurational phase changes (Pitteri, 2003). During configura-
tional weak phase changes the motif (the extra atom in graphene's
unit cell) follow the deformation of the skeleton, at least in the
beginning. On the other hand, structural weak phase transitions are
driven by the deformation of the motif followed by a suitable
consequent deformation of the skeleton. Therefore, since Cs
describe the skeleton deformation and p the motif deformation, by
means of matrices, 62W/6C§ being singular mark the initiation of
configurational weak phase changes. Singularity of the matrix
8’W/op2, on the other hand, is related with the initiation of
structural weak phase changes.

In the present framework graphene's energy depend on three
arguments: (Cs,bo,p). Thus, in general, weak phase changes happen
when the matrix of matrices dW /dy;dy;, y = (Cs,bo,p) is singular.
Since in our analysis here we perturb all three fields our stability
arguments give conditions such that the quantity oW /dy;dy;,
y = (Cs,bo,p) is non-singular. So, when these conditions fail, phase
changes take place. If only the field Cs is perturbed, then failure of
the conditions we obtain mark the initiation of configurational
weak phase changes. If only the field p is perturbed, then we obtain
conditions for the initiation of structural weak phase changes. All in
all, the need for stability criteria, is that they mark the initiation of
phase changes, in the sense that their failure provide conditions for
the phase changes to take place. If not all the fields are perturbed
we obtain as special cases the conditions for configurational and
structural weak phase changes.

The phonon-stability criterion at the continuum level is the
seeking for plane progressive waves (Hayes and Rivlin, 1961;
Sawyers and Rivlin, 1973, 1978, 1977; SawyersRivlin, 1977; Knops
and Wilkes, 1973; Sfyris, 2011) as candidate solutions for the the-
ory of small deformations superimposed upon large (Green et al.,
1952; England and Green, 1961; Toupin and Bernstein, 1961;
Knops and Wilkes, 1973). The starting point is the assumption
that the small deformation is a plane wave. Substituting this to the
equations of small upon large, we obtain a set of equations for the
amplitude of the wave. Requiring a non-trivial solution for it, we
obtain the secular equation. From the secular equation we obtain
necessary and sufficient conditions for the velocities of the wave to
be real. These conditions are given in terms of graphene's acoustic
tensors and constitutes the continuum analog of Elliott et al.
(2006a) phonon approach which requires the phonon frequencies
to be real.

Essentially, at the continuum level, we generalize the approach
of Rivlin and co-workers (Hayes and Rivlin, 1961; Sawyers and
Rivlin, 1973, 1977, 1978; SawyersRivlin, 1977) to graphene
modelled through its continuum energy (Sfyris and Galiotis, 2015;
Sfyris et al., 2014b, 2014a, 2015a). The generalization lies in the fact
that we perturb the 2-dimensional in-surface displacement field as
well as the curvature tensor and the shift vector. Also, we use the
moment of momentum equation in addition to the momentum
equation and the equation ruling the shift vector as well. For the
last equation we have two options: a static and a dynamic one and
we study both in the phonon method approach. Ultimately, we
obtain conditions for having real wave velocities. Failure of these
conditions means that weak phase changes take place. When only
the field Cs is perturbed these phase changes should be configu-
rational, while when only the field p is perturbed, the phase
changes should be structural.

For the Cauchy-Born stability criterion we generalize the
Legendre-Hadamard condition of E and Ming (2007) to our Hessian
matrix that contains terms related with the curvature as well, in
addition to terms related with the right Cauchy-Green tensor and
the shift vector. The elegant proof given by these authors (E and
Ming, 2007) is based on specific assumptions for the acoustic and
the optical branch of the spectrum of the dynamical matrix. Thus, it
renders an interesting relation between phonon and Cauchy-Born
stability criteria for the discrete case. Our approach for obtaining
the continuum Legendre-Hadamard condition is slightly different.
We assume generalized perturbations, in line with Steigmann and
Ogden (1997b) and evaluate the second variation of the energy.
We then keep the matrix we need and simplify all non-relevant
terms as much as possible using the Gauss formula for the sur-
face. What it remains is set equal to zero, rendering a sufficient
condition for the Cauchy-Born stability criterion to be expressed
through the Hessian of the energy.

Certainly, this line of attack is mainly based on intuition rather
than mathematical arguments. Nevertheless, it seems reasonable,
since it combines the approach of Steigmann and Ogden (1997b)
with the one of E and Ming (2007). The Hessian matrix of
Steigmann and Ogden (1997b) contains terms related with cur-
vature in addition to the one's from the in-surface strain, while
the approach of E and Ming (2007) contains terms related with
the shift vector in addition to the one's related with in-surface
strain. Our Hessian matrix contains all of these terms. We note
that an alternative though not straightforward path for proving
our claim may be through the quasiconvexity condition as
Steigmann and Ogden (1997a, 1999) do, noting that higher-order
quasiconvexity reduce to quasiconvexity for symmetric matrices
(DalMaso et al., 2004). Our Cauchy-Born stability criterion is the
continuum analog of the corresponding one of Elliott et al.
(2006a). These authors use the second derivative test using the
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