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a b s t r a c t

This paper deals with highly contrasted stratified laminates. The effective plate behavior is derived from
the 3D constitutive law of the materials combined with an asymptotic expansion formulation and an
appropriate scaling the stiffness contrast. This method enables to justify the a priori assumptions used in
the previous approaches. The different regimes of behavior are clearly specified, according to the me-
chanical and geometrical parameters of the layers, and to the loading. The method provides a synthetic
bi-torsor representation that facilitates the understanding of the coupling between the shear and
bending mechanisms. Applications to laminated glass and hard skin sandwich panels are presented.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper deals with the behavior of Highly Contrasted Sand-
wich (HCS) or stratified plates. HCS-plates are common in aero-
nautics where panels with hard skin and soft core are widely used.
HCS-plates are also encountered in other engineering fields where
stiff layers are glued with a soft matter. This is the case of glass
laminates made of glass plies (two or more) bounded by thin layers
of soft viscoelastic polymer.

Owing to their plane geometry, plates can be described by two
dimensional theories provided that the characteristic length of
deformation is significantly larger than the plate thickness. Under
this assumption, homogeneous plates have been described histor-
ically by the classic Kirchhoff model (analogous to Euler beam) that
accounts for bending only. This description has been improved by
the ReissnereMindlin model (analogous to Timoshenko beam) that
includes a correction accounting for transverse shear deformation
in thick plates (Reissner, 1995). These classical models performwell
for homogeneous plates however, their direct extension to lami-
nated plates raised difficulties for modeling properly the action of
shear forces. Many suggestions were made that lead to more
complex models. A review on these approaches can be found in
Carrera (2003) and Reissner (1995). Such models are related to
generalized continua as detailed in Altenbach et al. (2010). In this
perspective, the new concept of bending gradient recently

introduced in Leb�ee and Sab (2012) draws a promising way to
determine the shear effect in thick stratified plates.

The classical models of homogeneous plates have been justified
theoretically in Ciarlet and Destuynder (1979) using a multi-scale
asymptotic method based on the scale ratio ε between the plate
thickness h and the characteristic size of evolution of the phe-
nomena in the plane of the plate L, namely

ε ¼ h=L � 1

The reader may refer to Ciarlet (1997) and Trabucho and Viano
(1996) for a comprehensive analysis of the asymptotic approach.
The multi-scale homogenization method has been then extensively
used to derive the effective description for periodic plates, corru-
gated plates and stratified plates (Caillerie, 1982, 1984; Lewinsky
and Telega, 2000). The elastic properties of the constituents are
assumed of the same order of magnitude, and the inner stress
distribution, that determines the effective behavior, results from
this assumption. In case of highly contrasted constituents, the inner
stress distribution notably differs and the effective behavior has to
be reconsidered quantitatively and qualitatively.

Indeed, it is well recognized that the flexural response of lami-
nates is highly influenced by the contrast of rigidity between the
different layers. Consider for instance a tri-laminate. A central layer
of high stiffness gives a (quasi-) perfect connection and the whole
layers behave as a monolithic plate governed by a global bending.
Conversely, with very deformable central layer each external layer
slides (quasi-)perfectly with each other, and is governed by its own
bending. At intermediate values, the shear of the central layer has
to be taken into account to provide the transition between the
monolithic and multi-layer response.
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Besides, the difference between the two limits is large, so that
the limits do not provide a reasonable assessment of the actual
behavior, hence, a comprehensive relevant modeling requires
encapsulating e at least e the monolithic and multi-layer bending
mechanisms and the shear effect. This question is particulary
important for laminated glass, because the viscoelastic stiffness of
the polymer significantly depends on frequency and temperature.
Thus, in practice, the actual behavior may reach either the mono-
lithic or the multi-layer limits, depending on the loading and
external conditions. This situation departs from the usual or refined
description of elastic stratified plates with a limited level of
contrast. In fact, a weak contrast reduces the possible kinematics
and therefore eliminates some mechanisms occurring with high
contrasts.

The question of HCS-plates has been raised by Berdichevsky
(2010) for elastic plates having thin hard skin and thicker soft
core. A theoretical universal plate model was proposed, intro-
ducing a priori the plate kinematics in each layer, and using an
energetic asymptotic approach. Despite the generality of this
approach, the transfer of the energy formulation into the usual
terms of moment and transverse forces of plate theories remains
difficult. The “opposite” morphology, i.e. plies with thin inter-
layer, has been also studied, mainly in the context of glass-
polymer. A number of approximated models has been proposed,
e.g. (Asik and Tezcan, 2005; Norville et al., 1998) and a good re-
view can be found in Galuppi and Royer-Carfagni (2012b) or
Foraboschi (2012). More refined approaches accounting for the
elastic or viscoelastic shear behavior of the interlayer were
developed by Ivanov (2006), Galuppi and Royer-Carfagni (2012a),
and Foraboschi (2012) for static loading. In these works, the de-
scriptions are established by considering the balance equations of
the different layers in which the inner kinematics are assumed. By
construction, the usual kinematics variables as well as moments
and transverse forces of the plate are complemented by addi-
tional variables.

More generally, the developments of the last decades on
laminated plate theories, provide refined “zig-zag theories” for
plates. The main idea of these axiomatic theories is to postulate
the adequate “zig-zag” kinematics, enabling to respect as close as
possible the continuity and equilibrium equations in each layer.
This allows a better account for the shear effect. The comparative
study (Carrera and Ciuffreda, 2005), underlines that the “best”
choice among the different proposals available in the literature
may vary according to the desired accuracy (and possibly the
specificity of the plate, the nature of the loading and type of the
boundary conditions). The interest, but also the drawback, of these
refined models is that the geometry and mechanical properties of
the layers are somehow “hidden” in the “zig-zag” kinematics.
Thereby they provide accurate numerical results for elastic plates
but do not lead to synthetic formulations that enables to handle
the different involved mechanisms easily. For instance, in the case
of a viscoelastic interlayer, the shear modulus varies over several
decades and would require a continuous actualization of the zig-
zag kinematics in accordance with the current value of the
modulus.

The purpose of this paper is to derive a synthetic quasi-analytic
formulation describing the HCS plates under static and dynamic
loadings through a multi-scale asymptotic approach combined
with a scaling of the parameters. According to the multi-scale
asymptotic method (Sanchez-Palencia, 1980; Ciarlet, 1997;
Auriault et al., 2009) the effective 2D behavior is derived from the
3D constitutive law of the materials combined with (i) the specific
asymptotic expansions in ε power induced by the plate geometry,
and (ii) the appropriate scaling of the stiffness contrast. This
method allows justifying the a priori assumptions used in previous

approaches, and therefore the different regimes of behavior are
clearly specified, according to the mechanical and geometrical pa-
rameters of the layers and the type of loading (as well as the
temperature in the viscoelastic case). The method leads to a bi-
torsor representation that facilitates the understanding of the
coupling between the shear and bending mechanisms. This is
achieved by re-expressing the differential sliding motion between
the stiff layers in the form of an overall rotation, and then, by
associating this additional kinematic descriptor to an overall
moment. In this way the out-of-plane behavior of HCS plates re-
duces to the following simple form (f stands for the external
transverse forces):

8<
:

divxðT Þ ¼ f
T ¼ T � div xðMÞ
T ¼ �div xðMÞ

where the constitutive laws relating T, M and M to the kinematic
variables, namely, the deflection, the deflection's gradient, and the
overall rotation, are explicitly determined from the properties and
geometry of the three layers.

Results of the present paper are limited to sandwich or sym-
metric stratified plates with respect to their middle plane. The focus
is the response to transverse loads and therefore to the bending/
shearing problem. However the in-plane behavior is also derived.
Furthermore, the developments are performed in the framework of
small deformation and of linear elastic and/or viscoelastic behavior.

The paper is organised as follows. Section 2 is devoted to the
scaled formulation of HCS-plates. In Section 3 the HCS-plate model
is established through the asymptotic expansions method. The
results are discussed in Section 4. Applications to laminated glass
and sandwich panels are discussed in Section 5.

2. Scaled formulation of HCS-plates

This section aims to express mathematically the influence of the
plate geometry on the formulation, and to scale the physics in the
case of high mechanical contrast. We consider a symmetric strati-
fied plate U (see Fig. 1) mades of two identical external stiff layers
Uþ andU�, each of thickness h, perfectly connected to a soft central
layer Uc of thickness c of the same order of magnitude as h. Thus,
Ut ¼ Uþ ∪ Uc ∪ U� denotes the whole plate, and U ¼ Uþ ∪ U� de-
notes the two external layers; G ¼ Gþ∪ G� represents the external
boundaries of U while Gc ¼ Gcþ∪ Gc� are the boundaries of Uc. The
characteristic size of evolution of the phenomena in the plane of
the plate L is significantly larger than the total thickness of the plate
ht ¼ 2hþ c.

Herein, the orientation is specified using the reference ortho-
normal frame fa ; aag, a ¼ 1;2 (by convention, Greek indices run
from 1 to 2) and the associated Cartesian coordinates x; xa, where a
denotes the out-of-plane direction of the plate and aa, a ¼ 1;2
designate the in-plane directions (hence, the in-plane position
vector is given by x ¼ xaaa). The displacement vector u is decom-
posed into the deflection, i.e. the out-of-plane component denoted
w, and the in-plane components denoted ua, hence
u ðx; xÞ ¼ wðx; xÞa þ uaðx; xÞaa.

At first, let us focus on the situation where (i) the plate is made
of elastic materials (linear isotropic), (ii) the current plate section is
assumed free of surface and volume forces, (iii) the plate behaves in
quasi-static regime. Under these assumptions, the local governing
equations consist in the momentum balance without body force,
the isotropic elastic constitutive law, the perfect contact condition
on the internal interface and the no-loading condition on the
external surfaces. These equations read:
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