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a b s t r a c t

In this paper, the element free galerkin (EFG) method based on third-order shear deformation theory
(TSDT) is used to investigate shape and vibration control of piezoelectric laminated plate bonded with
piezoelectric actuator and sensor layers. The electric potential distributions through the thickness for
each piezoelectric layer are assumed to vary linearly. In addition, a closed-loop velocity feedback control
and optimal steady-state regulator with output feedback algorithm is used for the active control of the
static deflection as well as the dynamic response of the plates with bonded distributed piezoelectric
sensors and actuators. Furthermore, the effects of the size of support and nodal density on the numerical
accuracy are also investigated. The results indicate that, the accuracy and reliability of presented work
have an excellent agreement with those of other available numerical approaches such as finite element
and FSDT meshfree method.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The study of embedded or surface-mounted piezoelectric ma-
terials in structures has received considerable attention in recent
two decades (Mitchell and Reddy, 1995). It is due to possibility of
creating certain types of structures and systems capable of adapting
to or correcting for changing operating conditions. The advantage
of incorporating these special types of material into the structure is
due to the fact that the sensing and actuating mechanism becomes
part of the structure by sensing and actuating strains directly.

Classical mathematical models have already been well estab-
lished for the phenomena in the areas of mechanics of solids and
structures. Meanwhile, different types of differential or partial
differential equations (PDEs) that govern these phenomena have
also been derived. There are largely two categories of numerical
methods for solving these PDEs (Liu and Gu, 2005): direct approach
and indirect approach. The direct approach known as strong form
methods (such as the finite difference method (FDM) and colloca-
tion method) discretizes and solves the PDEs directly, and the in-
direct approach known as weak form methods (such as finite
element method (FEM)) establishes first an alternative weak form

system equation that governs the same physical phenomena and
then solves it. The weak form equations are usually in an integral
form, implying that they need to be satisfied only in an integral
(averaged) sense. The (EFG), one of known category of meshfree, is
a standard weak formulation that is variationally consistent due to
the use of compatible moving least squares (MLS) shape functions
and the Galerkin approach with constraints to impose the essential
boundary conditions. In the EFG method, in order to derive the
stiffness matrix, some complex integrals should be solved via nu-
merical procedures. Therefore, a need for background mesh to
perform the numerical integration is unavoidable. Subsequently, in
the EFG method the integration cells do not require to be attuned
with the scattered nodes distributed on the problem domain.
Hence, the generation of background mesh is more easily than the
FEM methods. Liew et al. (2004, 2002) represented a formulation
by employing the EFG method based on the first-order shear
deformation theory to study the shape control and vibration sup-
pression of piezo-laminated composite beams and plates. Liu et al.
(2004) developed the previous work with employing the point
interpolation method using radial basis functions (RPIM) based on
the first-order shear deformation theory.

In EFG method, the shape functions constructed by MLS
approximation do not consider the property of delta functions.
Hence, the essential boundary conditions cannot be imposed as
conveniently as the standard FEM method. Liu and Chen (2001)* Corresponding author.
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consider the orthogonal transformation techniques to impose the
essential boundary conditions for free vibration analysis of a thin
plate. Dai et al. (2004) used the penalty method to impose the
essential boundary conditions for the static deflection and free vi-
bration analysis of composite plates. This proposed method pre-
sented by Dai et al. (2004) is more efficiently than orthogonal
transform method (Liu and Chen, 2001).

Samanta et al. (1996) represented a generalized finite element
formulation with an eight noded two-dimensional quadratic
quadrilateral isoparametric element for active vibration control of a
laminated plate integrated with piezoelectric polymer layers acting
as distributed sensors and actuators based on third-order shear
deformation theory. Similar works developed finite element
formulation for active vibration control of smart structure (Moita
et al., 2005; Phung-Van et al., Sep. 2013; Phung-Van et al., 2014;
Thinh and Ngoc, 2010).

The modern control techniques are to be widespread in
designing the stability augmentation systems. This is accom-
plished by regulating certain states of the system to zero while
obtaining desirable closed-loop response characteristics. Output
feedback will allow engineers to design plant controllers of any
desired structure. In the constant gain velocity feedback control
strategy (CGVF), the stability of the system is guaranteed only
when the actuators and sensors are truly collocated. Moreover, the
linear quadratic regulator (LQR) algorithm does not require
collocated actuatoresensor pairs for stability, but it requires the
measurement of all state variables, which is a difficult proposition.
This is another reason for preferring output feedback over full-
state feedback (Lewis et al., 2012). Ray (1998) presented a simple
method of closed-form solution for optimal control of thin sym-
metric laminated plates with output feedback using distributed
piezoelectric sensors and actuators. Bhattacharya et al. (2002)
proposed a new control strategy based on Independent Modal
Space Control (IMSC) technique and used for the vibration sup-
pression of spherical shells made of laminated composites.
Zabihollah et al. (2007) investigated the vibration control of the
new generation of smart structures using the LQR strategy with
finite element model based on the layerwise theory of Reddy
(2004). Kusculuoglu and Royston (2005), Kapuria and Yasin
(2010) used a reduced-order state space model for active vibra-
tion suppression of piezoelectric laminate plates using both clas-
sical (CGVF) and optimal control strategies (LQR).

In the literature reviewed above in active vibration control of
piezoelectric composite plates with meshfree method, the first
order shear deformation theory are used, whereas this theory for
thick plate and high frequency response is less accurate. Thus, in
present job the higher order theory is accomplished. Controllers
used, in above literature are not appropriate. In some works, the
CVGF controller is employed which is a simple controller, but the
stability of the system is not guaranteed in general conditions.
Moreover, in some works the LQR controllers are used. In spite of
efficient stability LQR controller, it requires the measurement of all
state variables, which is essentially troublesome. In the present
work, in order to cope with this recent drawback, the LQR with
output feedback is recommended. In this controller both stability
of the system as well as the swiftness of the time response
expenditure are satisfied. Therefor the objective of this paper is to
develop the EFG method based on the third-order shear defor-
mation theory for static, free vibration and dynamic control of
piezoelectric composite plates integrated with sensors and actu-
ators. The active vibration control capability is studied using a
simple, CGVF and LQR with output feedback. The accuracy and
reliability of the proposed method is verified by comparing its
numerical predictions with those of other available numerical
approaches.

2. Theory and formulation

2.1. Linear piezoelectric constitutive equations

The quasi-static linear piezoelectric constitutive equations can
be defined as:

fDg ¼ ½e�fεg þ ½k�fEg (1)

fsg ¼ ½c�fεg � ½e�TfEg: (2)

where {D}, {E}, {s} and {ε} represent the vectors of electric
displacement, electric field, stress, and strain, respectively; and [c],
[k], [e] denote the matrices of plane-stress reduced elastic for a
constant electric field, dielectric constant at constant mechanical
strain and piezoelectric stress constant, respectively.

The electric field potential relation is given by:

Exi ¼ �vf

vxi
(3)

The plane-stress elastic constants [c] are given as:

½c� ¼

2
66664
c11 c12 0 0 0
c21 c22 0 0 0
0 0 c66 0 0
0 0 0 c44 0
0 0 0 0 c55

3
77775 (4)

where the material constants are given by:

c11 ¼ E1
1� n12n21

; c12 ¼ n12E2
1� n12n21

; c22 ¼ E2
1� n12n21

;

c66 ¼ G12; c44 ¼ G13; c55 ¼ G23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
(5)

in which E is Young moduli, G is the shear moduli and n is the
Poisson's ratios.

2.2. Displacements and strains based on TSDT

For the TSDT, we assume the following displacement field
(Reddy, 2004):

uðx; y; zÞ ¼ u0ðx; yÞ þ z4xðx; yÞ � z3c1

�
4x þ

vw0

vx

�

vðx; y; zÞ ¼ v0ðx; yÞ þ z4yðx; yÞ � z3c1

�
4y þ

vw0

vy

�

wðx; y; zÞ ¼ w0ðx; yÞ

(6)

where c1 ¼ 4/3 h2 and (u0,v0,w0) denote the displacements of a
point on the midplane in (x,y,z) direction and (4x,4y) are rotation
about (y,x) respectively.

The in-plane strains are thus expressed by the following
equation:

ε ¼ �
εxx εyy gxy

�T ¼ ε
ð0Þ þ zεð1Þ þ z3εð3Þ (7)

where:

R. Talebitooti et al. / European Journal of Mechanics A/Solids 55 (2016) 199e211200



Download English Version:

https://daneshyari.com/en/article/773852

Download Persian Version:

https://daneshyari.com/article/773852

Daneshyari.com

https://daneshyari.com/en/article/773852
https://daneshyari.com/article/773852
https://daneshyari.com

