FISEVIER

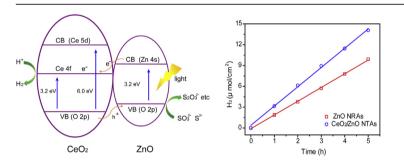
Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Short communication

Facile synthesis of large-area CeO₂/ZnO nanotube arrays for enhanced photocatalytic hydrogen evolution



Cheng-hui Zeng ^{a, b}, Shilei Xie ^a, Minghao Yu ^a, Yangyi Yang ^a, Xihong Lu ^{a, *}, Yexiang Tong ^{a, *}

HIGHLIGHTS

- Design of CeO₂/ZnO nanotube array films via a simple two-step electrodeposition process.
- CeO₂/ZnO nanotube arrays exhibit enhanced photocatalytic activity and excellent stability.
- Films on FTO substrates make the collection and recycle of photocatalyst easier.

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Article history:
Received 20 July 2013
Received in revised form
2 September 2013
Accepted 3 September 2013
Available online 12 September 2013

Keywords: Ceria Zinc oxide Nanotube Hydrogen evolution

ABSTRACT

 CeO_2/ZnO nanotube array films grown on FTO substrates are successfully synthesized by a two-step electrodeposition process. The CeO_2/ZnO nanotube array films exhibit substantially enhanced photocatalytic activity with a hydrogen evolution rate of $2.7~\mu mol~cm^{-2}~h^{-1}$ under white light irradiation and excellent stability. Moreover, the collection and recycle of these immobilized CeO_2/ZnO nanotube array films are much easier compared with the powder photocatalysts.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

As a clean energy carrier without greenhouse gases or other pollutants, hydrogen has gained great interest owing to the increasing demand for energy and environment protection. Searching an effective and low-cost approach to produce hydrogen

is very important for hydrogen economy. Photocatalytic hydrogen production is widely recognized as one of the most promising approaches to generate hydrogen, which is produced in a sustainable manner from solar energy without yielding carbon dioxide [1,2]. Recently, nanostructures have received considerable interest for photocatalytic hydrogen production due to their high surface area and rapid charge separation ability. Among various nanostructures, hollow nanotubes are attracting a great deal of attention as photocatalysts because they have higher interfacial area and faster charge transport pathway than nanoparticles and other one-

^a KLGHEI of Environment and Energy Chemistry, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China

^b College of Chemistry and Chemical Engineering, Jangxi Normal University, Nanchang 330022, China

^{*} Corresponding authors. Tel.: +86 20 84110071; fax: +86 20 84112245. E-mail addresses: luxh6@mail.sysu.edu.cn, luxihong@gmail.com (X. Lu).

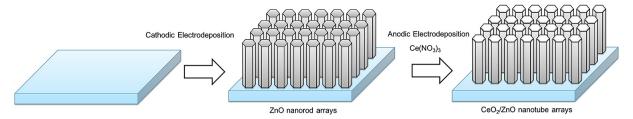


Fig. 1. Schematic diagram of the fabrication process for CeO₂/ZnO nanotube arrays.

dimensional (1D) nanostructures such as nanorods or nanowires [3,4]. Moreover, recent reports have demonstrated that the direct growth of ordered nanotubes on conductive substrates can facilitate the diffusion of active species and transport of electrons, and could further improve photocatalytic performance [5,6]. In recent years, numerous methods including high temperature evaporation, hydrothermal synthesis, anodic oxidation, and template- and surfactant-assisted growth techniques have been developed to prepare nanotubes on conductive substrates [7–11]. Nevertheless, the development of facile, low-cost and effective methods for the large-area synthesis of ordered nanotubes on conductive substrates is highly desirable, but still challenging.

Transition metal oxides such as TiO₂, ZnO and BiVO₄ have been extensively investigated as photocatalysts for photocatalytic hydrogen production [12–17]. Little attention has been paid to the rare earth oxides, regardless of their outstanding optical and catalytic properties. In recent years, CeO₂ has attracted increasing interest as a photoactive material because it has strong redox capability, and a relatively small band gap of 3.2 eV that originates from the O 2p to Ce 4f transition [18]. Additionally, CeO2 nanostructures such as hexagonal nanorods and nanowires have been examined in photocatalytic hydrogen evolution, and they have shown good photocatalytic activity [6,19,20]. However, the largescale fabrication of CeO₂ nanostructures with good photocatalytic activity, especially for commercial manufacture, is still very challenging. In this paper, we report a facile and cost-effective electrochemical method to synthesize large-area CeO₂/ZnO nanotube arrays (NTAs) on F-doped SnO2 (FTO) glass substrates and their improved performance in photocatalytic hydrogen production. The CeO₂/ZnO nanotube arrays were grown on FTO substrates via a two-step electrodeposition process, which involves the cathodic electrodeposition of aligned ZnO nanorod arrays (NRAs) as the template and subsequently anodic electrodeposition of CeO₂ on the ZnO nanorods to form CeO₂/ZnO nanotubes. These CeO₂/ZnO nanotube arrays grown directly on FTO substrates can provide a high interfacial area and superior electron transport pathways, which hence improve their photocatalytic performance. The CeO₂/ ZnO nanotube arrays exhibited substantially higher photocatalytic activity than ZnO nanorod arrays, with a hydrogen evolution rate of $2.7~\mu mol~cm^{-2}~h^{-1}$ under white light irradiation and good cycling performance.

2. Experimental

2.1. Materials

The analytical grade of commercially Zn(NO₃)₂ (Sinopharm Chemical Reagent Co., Ltd., Beijing, China), Ce(NO₃)₃ (Sinopharm Chemical Reagent Co., Ltd., Beijing, China), ammonium acetate (NH₄Ac) (Sinopharm Chemical Reagent Co., Ltd., Beijing, China), hexamethylenetetramine (HMT) (Sinopharm Chemical Reagent Co., Ltd., Beijing, China) and dimethyl sulfoxide (Sinopharm Chemical Reagent Co., Ltd., Beijing, China) were used directly without any

purification. The F-doped SnO_2 -coated glass (FTO, TCO-15) with a sheet resistance of 14 <0MEGA> per square was purchased from Nippon Sheet Glass Co., Ltd., Tokyo, Japan. The FTO glass was cleaned ultrasonically in distilled water, ethanol, and acetone and then rinsed in distilled water again before electrodeposition.

2.2. Photocatalysts preparation

The CeO_2/ZnO nanotube arrays were synthesized by a two-step electrodeposition process, which is summarized schematically in Fig. 1. First, ZnO nanorod arrays were grown on FTO substrates $(4\times4~cm^2)$ by cathodic electrodeposition in an aqueous solution containing 0.02 M Zn(NO₃)₂, 0.01 M NH₄Ac and 0.01 M HMT with a current density of 0.5 mA cm⁻² at 90 °C. After 60 min cathodic deposition, a white film was obtained on FTO substrate. The ZnO nanorod arrays were then used as templates for further formation of CeO_2/ZnO nanotube arrays. CeO_2/ZnO nanotubes were directly obtained via anodic electrodeposition in a solution of 0.01 M $Ce(NO_3)_3 + 10\%$ DMSO (10 vol % DMSO:90 vol % H₂O) with a current density of 0.25 mA cm⁻² at 90 °C.

2.3. Characterizations and measurements

The surface morphologies and microstructures were analyzed by a field-emission scanning electron microscope (FE-SEM, JSM-6330F) and transmission electron microscopy (TEM, JEM-2010F). The structures of the samples were investigated via an X-ray diffractometer (XRD, D8 ADVANCE) using Cu K α radiation ($\lambda=0.15418$ nm). The chemical state of the films was analyzed directly using X-ray photoelectron spectroscopy (XPS, ESCA-Lab250). The optical properties of the products were measured with a UV–Vis–NIR Spectrophotometer (UV–Vis–NIR, Shimadzu UV-2450).

The photocatalytic hydrogen evolution reactions were examined in a closed gas circulation and evacuation system. Typically, a piece of large-area ZnO or CeO₂/ZnO films (4 \times 4 cm²) was immersed into 100 mL of 0.1 M Na₂S and 0.1 M Na₂SO₃ mixed aqueous solution in a Pyrex reaction cell. The light source was a 300 W Xe lamp (PLS-SXE-300UV, Beijing Trusttech) supplying the full wavelength illumination. The intensity of the white light was determined by an irradiatometer (BNU photoelectric Co., Ltd., FZ-A) and was about 100 mW cm $^{-2}$. The amount of hydrogen produced was analyzed using on-line gas chromatography (with a thermal conductivity detector and an N₂ carrier).

3. Results and discussion

Fig. 2a is the photo image of CeO₂/ZnO nanotube arrays obtained on FTO substrate, showing that most of the FTO substrate (around 16 cm²) was uniformly covered by a thin film with good transmittance. Scanning electron microscopy (SEM) images in Fig. 2b and c clearly show that the white film obtained on FTO substrate was covered by dense and ordered ZnO nanorods. These nanorods

Download English Version:

https://daneshyari.com/en/article/7738768

Download Persian Version:

https://daneshyari.com/article/7738768

<u>Daneshyari.com</u>