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In this paper, an exact solution is derived for the characterization of thermal stresses in a single-fibre
composite of finite length. All the required boundary and interfacial conditions of the thermo-elastic
problem are thus satisfied exactly. The proposed method involves a particular solution that is added to
a three-dimensional (3D) complementary displacement field which satisfies automatically the Navier’s
equations. Based on experimental data provided by fibre Bragg grating sensors, an axisymmetric analysis
is used then to determine the residual stress field inside the composite due to matrix shrinkage. The
numerical results clearly indicate that all stress components vary significantly near the ends. An abrupt
change of the shear stresses is thus predicted close to the edges. The results of the model are also
found to be in good agreement with those obtained from finite element simulations. A comparison of
the proposed approach with three other published theoretical models is also presented.
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1. Introduction

Fibre-reinforced thermosets (e.g. epoxies) are commonly used
in advanced engineering applications, owing to their resistance to
corrosive environment, versatility and light weight. They can be
advantageously tailored to meet the application requirements and
have shown superior performance over traditional materials in cer-
tain situations (e.g. the conveyance of aggressive media). However,
it is well recognized that significant residual stresses may arise
during the fabrication process, influencing the in-situ mechanical
response of the component. Broadly speaking, residual stresses are
attributed to differences in the coefficients of thermal expansion
(CTEs) of the fibres and matrix as well as resin differential cure
shrinkage. Depending on their nature, these stresses can enhance
interfacial contact between the components but also initiate matrix
or interface cracking and cause premature failure. In other words,
they may have a pronounced effect on the micro-stress field within
a composite structure and must be added to the stresses induced
by the external mechanical loads.

A number of two-dimensional (2D) analytical solutions are
presently available in the literature to describe the local thermal
stress state in fibre-reinforced composites (Mikata and Taya, 1985).
Such thermo-elastic models often deal with two or several concen-
tric long circular cylinders representing different material phases
(e.g. a coating layer). More or less complex interfacial conditions
may also be introduced to take into account imperfections in the
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adhesion between fibre and matrix. For example, an imperfect in-
terphase is simulated by introducing a hollow cylindrical layer
with radius-dependent thermo-elastic properties (Jayaraman and
Reifsnider, 1993). However, most of these models assume general-
ized plane strain conditions, only valid for infinitely long cylinders.
These solutions cannot satisfy properly the boundary conditions
at the ends of finite length cylinders. According to Saint Venant’s
principle, they are convenient approximations of the problem far
from the ends where higher damaging stresses are generally ex-
pected. In particular, the sharp changes of the interfacial shear
stress near the ends cannot be captured by these simplified an-
alyzes.

It is rather difficult to derive three-dimensional (3D) closed
form solutions for similar problems, because of the mathematical
difficulties involved. Recognizing the significance of stress concen-
tration at fibre ends, some investigators have adopted numerical
methods (FE analysis) to evaluate properly the effects of end con-
ditions as well as interface properties (Kovalev et al., 1998). A the-
oretical model has been developed by Quek (2004) for the analysis
of thermal stresses in a single fibre-matrix composite of finite
length. Elastic solutions have also been obtained for axisymmet-
ric boundary value problems involving stress transfer in two-phase
cylindrical composites, under specific prescribed forces and/or dis-
placements at their external surfaces (Nairn and Liu, 1997; Wu et
al., 2000). Kurtz and Pagano (1991) have treated essentially the
same problem using stress function formalism. Solutions are typi-
cally found by using appropriate eigenfunction expansions that are
superimposed to appropriate particular solutions to meet the re-
quired boundary conditions.
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This work presents an exact solution for the stress field in a
single-fibre composite cylinder of finite length, subjected to ther-
mal loading. The solution is then used to predict the residual
stresses due to matrix shrinkage. The proposed approach combines
a particular solution for the thermal effect with a more general
solution that was originally constructed by Folias (1975) to solve
3D problems of elasticity. The method involves a double series
of eigenfunctions with complex unknown coefficients to be deter-
mined from the boundary conditions.

The paper is organized as follows. Section 2 outlines the com-
posite model and the associated thermo-elastic governing equa-
tions. The general method of solution is presented in Section 3
for the problem under consideration, with some details provided
in Appendix A. The unknown coefficients appearing in the solu-
tion are determined uniquely by solving a set of infinite linear
equations. Results and discussion are presented in Section 4: First
the predictions of the model are shown using experimental data
obtained for a single fibre composite using a long Fibre Bragg grat-
ing (Colpo et al., 2007). Next the model is compared with finite
elements (FE) simulations. The predictions of the model are also
discussed and compared with three other available benchmark so-
lutions. Finally, summary and conclusions are given in Section 5.

2. Model and basic equations

The model composite considered in this study is made up of
a solid cylinder (fibre) of radius a and length 2h and an equally
long hollow cylinder (matrix) of inner radius a and outer radius b.
Introducing cylindrical coordinates r, θ, z (see Fig. 1), the compos-
ite structure is bounded by the planes z = |h|, occupying the space
r � b, 0 � θ � 2π , |z| � h. The analysis is restricted to small strains
and both fibre and matrix materials are assumed to be homo-
geneous, isotropic and linear elastic. Intact interface is assumed
between the fibre and matrix. This assumption is based on exper-
imental evidence on a single fibre composite specimen where the
reinforcing glass fibre contains a long Bragg grating which gives
the strain distribution due to shrinkage along the grating (Colpo et
al., 2007). Such strains do not change after postcuring over long
periods of time showing an intact interface. Moreover, an axisym-
metric mode of deformation is supposed to exist so that the only
non-vanishing displacement and stress components are ur, uz and
σrr , σθθ , σzz , τrz , respectively. All these quantities are independent
of the coordinate θ .

The structure is subjected to a temperature rise while all points
of the ends are free of stress and constraint. Additionally, the outer
cylindrical boundary r = b, |z| = h is assumed to be free of stress.
In the subsequent, matrix and fibre sub-domains are denoted by
superscripts (1) and (2), respectively.

In the absence of body forces, the thermo-elastic axisymmetric
problem reduces to a solution of the following coupled differen-
tial equations governing the axial and radial displacements u(i)

z and
u(i)

r (i = 1,2)

mi

mi − 2

∂

∂r
e(i) + ∇2u(i)

r − u(i)
r

r2
= 2

mi + 1

mi − 2

∂

∂r
(αi T )

mi

mi − 2

∂

∂z
e(i) + ∇2u(i)

z = 2
mi + 1

mi − 2

∂

∂z
(αi T ) (1)

where T is the temperature rise, mi = 1/νi (Poisson’s number) the
reciprocal of the Poisson’s ratio νi and αi the coefficient of ther-
mal expansion for each of the material domains. In (1) ∇2 is the
Laplacian operator and e(i) the volumetric dilation (first invariant
of the small-strain tensor) expressed by
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Fig. 1. Definition of the model composite with (1) matrix and (2) fibre domains
subjected to a uniform temperature rise T0.

In the subsequent, a uniform temperature rise T0 is considered.
Consequently, system (1) reduces to the homogeneous Navier’s
equations of the elasticity theory. The thermo-elastic stress–strain
relations are expressed by
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where μi is the shear modulus for each material domain and the
infinitesimal strain components are given by
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Regarding the boundary conditions, it is required

• four continuity relations at the fibre-matrix interface (perfect
bonding)
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• the outer edges (external cylindrical surface and ends) to be
traction free, namely
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