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In this paper the symmetric boundary element formulation is applied to the fracture mechanics problems
for quasi brittle materials. The basic aim of the present work is the development and implementation of
two discrete cohesive zone models using Symmetric Galerkin multi-zone Boundary Elements Method.
The non-linearity at the process zone of the crack will be simulated through a discrete distribution
of nodal springs whose generalized (or weighted) stiffnesses are obtainable by the cohesive forces and
relative displacements modelling. This goal is reached coherently with the constitutive relation σ − �u
that describes the interaction between mechanical and kinematical quantities along the process zone.
The cracked body is considered as a solid having a “particular” geometry whose analysis is obtainable
through the displacement approach employed in [Panzeca, T., Salerno, M., 2000. Macro-elements in
the mixed boundary value problems. Comp. Mech. 26, 437-446; Panzeca, T., Cucco, F., Terravecchia,
S., 2002b. Symmetric Boundary Element Method versus Finite Element Method. Comput. Meth. Appl.
Mech. Engrg. 191, 3347-3367] by some of the present authors in the ambit of the Symmetric Galerkin
Boundary Elements Method (SGBEM). In this approach the crack edge nodes are considered distinct and
the analysis is performed by evaluating all the equation system coefficients in closed form [Guiggiani, M.,
1991. Direct evaluation of hypersingular integrals in 2D BEM. In: Proceedings of the 7th GAMM Seminar
on Numerical Techniques for Boundary Element Methods. Kiel, Germany; Gray, L.J., 1998. Evaluation
of singular and hypersingular Galerkin boundary integrals: direct limits and symbolic computation. In:
Sladek, J., Sladek V. (Eds.), Singular Integrals in Boundary Element Methods, Computational Mechanics
Publications, Southampton; Panzeca, T., Fujita Yashima, H., Salerno, M., 2001. Direct stiffness matrices of
BEs in the Galerkin BEM formulation. Eur. J. Mech. A/Solids 20, 277–298; Terravecchia, S., 2006. Closed
form in the Symmetric Boundary Element Approach. Eng. Anal. Bound. Elem. Meth. 30, 479–488].
Some examples show the goodness of the methodology proposed through a comparison with other
formulations [Barenblatt, G.I., 1962. Mathematical theory of equilibrium cracks in brittle fracture. Adv.
Appl. Mech. 7, 55–129; Saleh, A.L., Aliabadi, M.H., 1995. Crack growth analysis in concrete using Boundary
Element Method. Eng. Fract. Mech. 51, 533–545; Aliabadi, M.H., Saleh, A.L., 2002. Fracture mechanics
analysis of cracking in plain and reinforced concrete using boundary element method. Eng. Fract. Mech.
69, 267–280]. In these examples the applied loads and the length of the process zone are a priori given
and kept fixed during the analysis in order to check the constitutive behavior along the process zone.

© 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

The SGBEM has been utilized in the fracture mechanics only
in the last decades (Li et al., 1998; Maier et al., 1993; Carini
et al., 1999; Chen et al., 1999; Gray et al., 1993; Frangi, 2002;
Phan et al., 2003; Salvadori, 2003). Indeed, this method is perfectly
adaptable to the fracture mechanics problems both for the simplic-
ity of the crack boundary discretization during the growth and for
the employment of the symmetric and in sign defined operators.

* Corresponding author. Tel.: +39 91 6568413; fax: +39 91 6568407.
E-mail address: tpanzeca@tiscali.it (T. Panzeca).

In the ambit of the brittle materials, the most known cohesive
model was proposed by Barenblatt (1962). He assumes a non-
linear distribution of closing cohesive forces along the process zone
of the crack having as extreme value the ultimate tensile stress σu

at the crack tip. These external actions are used to simulate the
damage of the material at the process zone.

In the ambit of the concrete materials Aliabadi and Saleh
(2002), Saleh and Aliabadi (1995), Mi and Aliabadi (1994) have de-
veloped a model for crack growth by using Dual BEM. They replace
the fictitious crack by closing cohesive forces acting on both crack
surfaces, that is in accordance with the Barenblatt hypothesis.

In the past, many models have been developed in the am-
bit of the SGBEM for the analysis of a cracked body (linear and
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non-linear EFM) where in the mixed-value analysis a vector solu-
tion is obtained for the discretized body. This vector collects, as
unknown quantities, the reactive forces of the constrained bound-
ary nodes, the absolute displacements of the free boundary nodes
and the displacement discontinuities of the crack boundary (Carini
et al., 1999; Williams et al., 2006). This strategy is useful when
the stress field is described by Westergaard or Williams func-
tions where the SIFs (Stress Intensity Factors) are defined using
Linear Elastic Fracture Mechanics methods, as the Crack Open-
ing Displacement methods (Blandford et al., 1981; Gdoutos, 1993;
Portela et al., 1992) and J-Integral approach (Rice, 1968).

The objective of this work is to obtain in the analysis phase the
absolute displacements of the fictitious crack nodes and through
them to evaluate the other nodal quantities distributed along the
boundary: the reactive forces of the constrained boundary Γ1, the
displacements of the free boundary Γ2 and the mutual forces of
the opened one Γc .

For any geometry of the solid through all these quantities it is
possible to evaluate the internal stress field by using any method,
but it is not the aim of the present work.

The proposed model is based on the simple consideration that
a cracked body is a solid that has a “particular” geometry whose
analysis is obtainable through the displacement formulation em-
ployed by some of the present authors in the ambit of the Sym-
metric Boundary Elements Method. In this analysis it is possible to
evaluate the absolute displacements of the both crack edge nodes,
the crack tip included. This goal is reached in a program where all
the equation system coefficients are computed in closed form.

Besides a strategy allowing the evaluation of a stiffness func-
tion along the process zone has been developed. It is based on the
constitutive relations σ −�u and τ −�w between the normal and
tangential forces and the corresponding relative displacements. On
the base of these stiffness functions, appropriately modelled on the
boundary, the nodal stiffness will be evaluated by using the follow-
ing strategies:

(1) In the Section 3, an internal distribution of nodal springs is in-
cluded inside the cohesive zone for both normal and tangential
quantities, or

(2) In the Section 4, a suitable number of substructures are in-
serted at the process zone of the crack, each having a different
Young modulus and Poisson coefficient.

These strategies have been developed inside the software Kar-
nak.sGbem (Panzeca et al., 2002a). In this software all the coeffi-
cients of the equation system have been computed in closed form,
it permitting to obtain in the analysis phase the nodal absolute
displacements of the opened opposite sides.

2. The characteristic equation of an opened cracked body

Let the homogeneous elastic two-dimensional body of do-
main Ω be bounded by the constrained Γ1 and free Γ2 boundaries,
as well as by the cracked zone Γc , being Γ = Γ1 ∪ Γ2 ∪ Γc , as it is
shown in Fig. 1a. The external actions are the forces f̄ on Γ2, the
imposed displacements ū on Γ1 and the body forces b̄ in Ω . We
suppose that the friction does not happen between the two crack
edges.

It is known that in order to allow a structural analysis by us-
ing the Boundary Elements Method in its symmetric formulation,
it is necessary the employment of both the classical S.Is. of the
displacements and of the tractions, that is

u(x) =
∫
Γ

Guu(x;x′)f(x′)dΓ +
∫
Γ

Gut(x;x′,n′)v(x′)dΓ

+ uI (x), (1a)

Fig. 1. a) Cracked body; b) details of the cracked zone.

t(x,n) =
∫
Γ

Gtu(x,n;x′)f(x′)dΓ +
∫
Γ

Gtt(x,n;x′,n′)v(x′)dΓ

+ tI (x,n), (1b)

where the symbology introduced in precedent works (Maier and
Polizzotto, 1987; Polizzotto, 1988) has been employed. The matrix
Ghk(x,x′) collects the Fundamental Solutions (F.Ss.) in which the
effect at x is specified by the first index h, the cause at x′ is spec-
ified by the dual quantity associated to the second index k, being
h, k = u, t , σ . The vector v(x′) = −u(x′) represents the distortion,
that is the difference between the null displacement to be imposed
in the boundary of the complementary domain Ω∞\Ω and the
displacement of the real boundary of the body, when the solution
is reached.

In the previous relationships the force vector f(x′) collects the
unknown reactive forces on Γ1, the known ones on Γ2 and the
unknown cohesive closing forces on the process zone Γc , whereas
the distortion vector v(x′) collects the known absolute displace-
ments on Γ1, the unknown ones on Γ2, and the unknown absolute
displacements of both the edges of Γc , all changed in sign.

For this body we want to determine an elasticity equation con-
necting the quantities associated to the process zone by using a
strategy based on the symmetric approach of the Boundary Ele-
ments Method.

At this aim, the classical Dirichlet and Neumann conditions
must be imposed on the body boundary, i.e.

u1 = ū1 on Γ1, (2a)

t2 = f̄2 on Γ2 (2b)

whereas the displacement uc and cohesive closing force fc vectors
must be computed on Γc , i.e. in the cracked zone.

When we introduce the S.Is. of the displacements and of the
tractions, the following boundary integral equations may be writ-
ten:
on Γ1∫
Γ1

Guuf1 +
∮
Γ1

Gut(−ū1) + 1

2
ū1 +

∫
Γ2

Guu f̄2 +
∫
Γ2

Gut(−u2) +
∫
Γc

Guufc

+
∫
Γc

Gut(−uc) +
∫
Ω

Guu b̄ = ū1; (3a)

on Γ2∫
Γ1

Gtuf1 +
∫
Γ1

Gtt(−ū1) +
∮
Γ2

Gtu f̄2 + 1

2
f̄2 +

∫
Γ2

Gtt(−u2) +
∫
Γc

Gtufc

+
∫
Γc

Gtt(−uc) +
∫
Ω

Gtu b̄ = f̄2; (3b)

on Γc
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