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In the present paper, a new generalized Timoshenko model is constructed for a composite rod with
embedded or attached piezoelectric materials. This model is applicable to composite rods without
prescribed electric potential along the lateral surfaces. The Variational-Asymptotic Method (VAM) is
applied as a mathematical tool to carry out the dimensional reduction process. The present reduced
model captured the effects of dielectric as well as the polarization of the piezoelectric material,
which justifies its coupled electromechanical nature. First, the three-dimensional electromechanical
enthalpy is asymptotically approximated by VAM using the slenderness of the rod as the small
parameter and subsequently an equivalent one-dimensional electromechanical enthalpy is developed.
Energy terms, which are asymptotically correct up to the second order are kept in the approximate
enthalpy expression. For engineering applications, the approximate enthalpy is then transformed into
a generalized Timoshenko model which has the traditional six mechanical degrees of freedom along with
an extra one-dimensional electric degree of freedom.

© 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

Since their discovery by the Curie brothers (Katzir, 2003), piezo-
electric materials have been applied successfully in numerous sci-
entific fields. Ultrasonic technology, MEMS/NEMS industry, micro
acoustic generator, miniaturized electronic transformer, and smart
structures are among the well-known application areas of piezo-
electric materials. What distinguishes a piezoelectric material is its
remarkable property to create a conversion interface between two
forms of energy, i.e., mechanical to electric or vice versa. This two-
way coupling capability, along with other properties, such as rapid
response, high operating bandwidth and low power consumption,
make piezoelectric materials suitable for use both as sensors and
actuators (Aldraihem and Khdeir, 2003).

Piezoelectric beam actuators and sensors are very common in
scientific applications. Rosen type piezoelectric transformer (Rosen,
1956) is a perfect example where piezoelectric material is used to
build a beam like structure. Inspite of ever increasing sophistica-
tion in modern three-dimensional (3D) computational techniques,
sometime, it is neither computationally feasible nor desirable to
make a full 3D analysis in an electromechanically coupled frame-
work. As an alternative, researchers try to exploit the slender na-
ture of beam like structures and simplify the analysis using one-
dimensional (1D) reduced models. So, a natural question always
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remain: can these reduced models properly capture the electrome-
chanical effect?

Most of the beam-modeling techniques in the existing lit-
erature use conventional displacement field based approaches,
where the deformation patterns of a structure are assumed at
the very beginning of the analysis (Crawley and Anderson, 1990;
Robbins and Reddy, 1991; Park et al., 1996; Zhang and Sun, 1996;
Smyser and Chandrashekhara, 1997; Saravanos and Heyliger, 1995;
Reddy and Cheng, 2001). Sometimes, these models become over-
simplified due to these a priori assumptions, for example, existence
of uniaxial stress state, plane strain state etc. Also, it is very diffi-
cult, if not impossible, to assume correct deformational pattern to
capture the physics of electromechanical coupling. These assump-
tion based models work reasonably well for uncoupled problems,
but their applicability and authenticity in a coupled framework
always remain questionable. A comprehensive review on piezo-
electric beam like transformer modeling can be obtained in Yang
(2007).

Recently, the Variational Asymptotic Method (VAM) (Berdichev-
sky, 1979) has been applied to model smart beams made of
piezoelectric material. This method has both merits of variational
methods (viz., systematic and easily implemented numerically) and
asymptotic methods (viz., without ad hoc kinematic assumptions).
In the past, VAM has been successfully applied to model com-
posite beams (Yu et al., 2002). Cesnik et al. used VAM to model
smart beams made of piezoelectric fiber composites. They also de-
veloped one-way coupled classical model for smart thin-walled
beams (Cesnik and Shin, 2001), smart solid beams (Cesnik and
Ortega-Morales, 2001), and a coupled refined model for smart
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Fig. 1. Schematic of beam deformation.

beams (Cesnik and Palacios, 2005). In the refined model, they ap-
plied a Ritz-type assumed mode approximation to accommodate
the finite size effect of the cross section. Very recently, the authors
have developed a simpler theory for applying variational asymp-
totic method in the modeling of piezoelectric composite beams
(Roy et al., 2007). The work was based on the previous work on the
modeling of composite beams (Yu, 2002) and piezoelectric beams
(Le, 1999).

In most of the reported studies on piezoelectric beams, it is
assumed that the lateral surfaces are fully or partially electroded
with prescribed potentials. The present work attempts to study the
complementary cases where there is no prescribed electric poten-
tial on the lateral surfaces. Thus, the focus of this study is to use
VAM to rigorously reduce the dimension of such piezoelectric com-
posite rods to develop a reduced 1D beam model. The constructed
model and the accompanying numerical code, can have significant
application potential in the MEMS/NEMS industry, acoustic field,
smart structures, where beam like actuators and sensors made of
piezoelectric composites are frequently used (Yang, 2007).

1.1. Three-dimensional formulation

The Hamilton’s principle governing the 3D behavior of a piezo-
electric rod is stated as

t2∫
t1

[
δ(K − H) + δW

]
dt = 0 (1)

where t1 and t2 are arbitrary fixed times, K and H are the kinetic
and electric enthalpy, respectively, and δW is the virtual work of
applied loads and electric charges (if exist). The bar is used to in-
dicate that the virtual work needs not to be the exact variations of
functionals. The electric enthalpy of piezoelectric material is:

H = 1

2

∫
V

(Γ T : C E : Γ − 2E · e : Γ − E T · εΓ · E)dV (2)

where C E is the elastic tensor at constant electric field, Γ is the
strain tensor, e is the piezoelectric tensor, E is the electric field

vector, εΓ is the dielectric tensor at constant strain field, and V is
the space occupied by the structure. It is noted that although the
focused application is piezoelectric rods, the present formulation
is equally applicable to smart rods made of other smart materials
characterized by a constitutive model with the same mathematical
structure as Eq. (2).

In Fig. 1, a beam is represented by a reference line r measured
by coordinate x1. A typical cross section s with h as its characteris-
tic dimension is described by cross-sectional Cartesian coordinates
xα (here and throughout the paper, Greek indices α,β . . . assume
values 2 and 3 while Latin indices assume 1, 2, and 3. Repeated
indices are summed over their ranges except where explicitly indi-
cated). At each point along r, an orthonormal triad bi is introduced
such that bi is tangent to the coordinate curve xi . The position vec-
tor r̂ of an arbitrary point in the undeformed structure is given by

r̂(x1, x2, x3) = r(x1) + xαbα (3)

where r is the position vector of a point on the reference line and
r′ = b1. Here ( )′ denotes the partial derivative with respect to x1.
When the beam deforms, the triad bi rotates to coincide with a
new triad Bi . Here B1 is normal to the unwarped cross section, but
not tangent to the beam deformed reference line due to transverse
shear deformation. For the convenience of derivation, we introduce
another triad Ti associated with the deformed beam (see Fig. 2),
with T1 tangent to the deformed beam reference line and Tα is de-
termined by a rotation about T1. The difference in the orientations
of Ti and Bi is due to small rotations associated with transverse
shear deformations, as shown in Fig. 2. In Fig. 2, 2γ13 is a small
angle in 1–3 plane caused by the shear deformation while another
rotation due to 2γ12 is not sketched for clarity.

The material points having position vector r̂ in the undeformed
beam can be located after deformation by the vector function given
by

R̂(x1, x2, x3) = R(x1) + xαTα(x1) + wi(x1, x2, x3)Ti(x1) (4)

where R is the position vector to a point on the reference line
of the deformed beam and defined as the average of R̂(x1, x2, x3)

over the reference cross section. In Eq. (4), w1 denotes the out of
plane warping while w2 and w3 denote the inplane components
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